ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DOKTORA TEZİ

Neslihan SEÇKİN

L-MOMENTLERE DAYALI GÖSTERGE-SEL METODU İLE BÖLGESEL TAŞKIN FREKANS ANALİZİ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

ADANA, 2009

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

L-MOMENTLERE DAYALI GÖSTERGE-SEL METODU İLE BÖLGESEL TAŞKIN FREKANS ANALİZİ

Neslihan SEÇKİN

DOKTORA TEZİ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

Bu Tez tarihinde Aşağıdaki Jüri Üyeleri Tarafından Oybirliği /Oyçokluğu İle Kabul Edilmiştir.

İmza.....İmza.....İmza.....Prof. Dr. Recep YURTALProf. Dr. M. Salih KIRKGÖZProf. Dr. Tefaruk HAKTANIRDANIŞMANÜYEÜYE

İmza.....İmza..... Dog Dr. MEHMET APDICI IOĞI II. Vard Dog Dr. Hatiog CAĞATAV

Doç. Dr. MEHMET ARDIÇLIOĞLU Yard. Doç. Dr.Hatice ÇAĞATAY ÜYE ÜYE

Bu Tez Enstitümüz İnşaat Mühendisliği Anabilim Dalında Hazırlanmıştır. Kod No:

Prof. Dr. Aziz ERTUNÇ Enstitü Müdürü İmza ve Mühür Bu çalışma Çukurova Üniversitesi Bilimsel Araştırma Projeleri Birimi Tarafından Desteklenmiştir. Proje No: MMF2004D18

Not: Bu tezde kullanılan özgün ve başka kaynaktan yapılan bildirişlerin, çizelge, şekil ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat eserleri Kanunundaki hükümlere tabidir.

ÖZ

DOKTORA TEZİ

L-MOMENTLERE DAYALI GÖSTERGE-SEL METODU İLE BÖLGESEL TAŞKIN FREKANS ANALİZİ

Neslihan SEÇKİN

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

Danışman	: Prof. Dr. Recep YURTAL
Yıl	: 2009, Sayfa: 241
Jüri	: Prof. Dr. Recep YURTAL
	Prof. Dr. M. Salih KIRKGÖZ
	Prof. Dr. Tefaruk HAKTANIR
	Doç. Dr. Mehmet ARDIÇLIOĞLU
	Yard. Doc. Dr. Hatice CAĞATAY

Hidrolik yapıların tasarlanması ve projelendirilmesi belirli bir dönüş aralığı için gözlemlenmesi beklenen bir tasarım değerini gerektirir. İstatistiksel bir metod olan bölgesel taşkın frekans analizi bu amaçla kullanılır. Bölgesel frekans analizi, sadece su yapılarının tasarımı sırasında etkili tahmin yapılmasında değil, aynı zamanda hidrolojik bilgi olmayan veya kısa süreli veriye sahip bölgelerde de tasarım parametrelerinin belirlenmesinde kullanılabilmektedir.

Bu çalışmada dağılım parametrelerini tahmin etmek için L-momentler tekniği kullanılarak Türkiye'de bulunan 26 havzadaki 455 istasyona ait su yılı maksimum akım değerlerine bölgesel taşkın frekans analizi uvgulanmıştır. Homojen bölgeleri tanımlamak için, L-momentlere dayalı gösterge-sel metodu (Index Flood Method) homojen bölgelere kullanılmıştır. Elde edilen Genellestirilmis Normal. Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Lojistik, Genelleştirilmiş Pareto, Pearson Tip 3 ve Wakeby dağılımları uygulanarak tekerrür değerleri elde edilmiştir. Tahmin edilen tekerrür değerlerinin doğruluğu Monte Carlo Simülasyonu kullanılarak bölgesel L-moment algoritması ile elde edilmiştir. Sonuç olarak, Türkiye havzalarına genellikle Genelleştirilmiş Lojistik (GLO) dağılımının uyduğu belirlenmiştir.

Anahtar Kelimeler: Bölgesel frekans analizi, L-momentler, gösterge-sel yöntemi.

ABSTRACT

Ph.D THESIS

REGIONAL FLOOD FREQUENCY ANALYSIS USING INDEX FLOOD METHOD BASED ON L-MOMENTS

Neslihan SEÇKİN

DEPARTMENT OF CIVIL ENGINEERING INSTITUE OF NATURAL AND APPLIED SCIENCE UNIVERSITY OF CUKUROVA

Supervisor	: Prof. Dr. Recep YURTAL
Year	: 2009, Pages: 241
Jury	: Prof. Dr. Recep YURTAL
	Prof. Dr. M. Salih KIRKGÖZ
	Prof. Dr. Tefaruk HAKTANIR
	Assoc. Prof. Dr. Mehmet ARDIÇLIOĞLU
	Assist. Prof. Dr. Hatice ÇAĞATAY

The design of hydraulic structures require a design value expected to be observed in a given return period. Regional frequency analysis, being a statistical method, is used for this purpose. Regional flood frequency analysis provides a solution not only in estimating the design event magnitudes but also at sites having too short records and at sites where no hydrologic information is available.

In this study, regional flood frequency analysis using the L-moments method for estimating the probability distribution parameters were applied to recorded series of annual flood peaks which belong to 455 stations in 26 river basin in Turkey. The index flood method based on L-moments method was used for identification of homogenous region. Generalized Normal, Generalized Ekstreme Value, Generalized Logistic, Generalized Pareto, Pearson Type 3 and Wakeby distributions were applied to homogenous regions.

The accuracy of the estimated quantiles is assessed through the regional Lmoment algorithm using Monte Carlo simulation. As a result, generally the Generalized Logistic (GLO) distribution is found to be suitable for river basins in Turkey.

Key Words: Regional frequency analysis, L-moments, index flood method

TEŞEKKÜR

Doktora danışmanlığımı üstlenerek, çalışmalarımı yönlendiren, destek veren ve yardımcı olan sayın hocam Prof. Dr. Recep YURTAL'a, İnşaat Mühendisliği Bölüm Başkanı Prof. Dr. M. Salih KIRKGÖZ'e ve bilgi ve tecrübelerinden faydalandığım Prof. Dr. Tefaruk HAKTANIR'a,

Tez çalışmalarımı maddi olarak destekleyen Çukurova Üniversitesi Rektörlük Araştırma Fonu'na,

Teşekkür ederim.

İÇİNDEKİLER

SAYFA

ÖZ	I
ABSTRACT	II
TEŞEKKÜR	III
İÇİNDEKİLER	IV
ÇİZELGELER DİZİNİ	VII
ŞEKİLLER DİZİNİ	XVIII
1.GİRİŞ	1
2. ÖNCEKİ ÇALIŞMALAR	3
3.MATERYAL VE METOD	12
3.1. Materyal	12
3.2. Metod	13
3.2.1. Bölgesel Taşkın Frekans Analizi	13
3.2.1.1. Gösterge Sel Metodu (Index Flood Method)	14
3.2.2. Parametre Tahmin Yöntemleri	23
3.2.2.1. Maksimum Olabilirlik Yöntemi	24
3.2.2.2. Momentler Yöntemi	
3.2.2.3. Olasılık Ağırlıklı Momentler Yöntemi (PWM)	
3.2.2.4. L-Momentler Yöntemi	
3.2.3. Dağılımların Parametrelerinin L-momentler Yöntemi ile Tahmini.	
3.2.3.1. Genelleştirilmiş Ekstrem Değer Dağılımı (GEV)	
3.2.3.2. Genelleştirilmiş Lojistik Dağılım (GLO)	
3.2.3.3. Genelleştirilmiş Normal Dağılım (GNO)	
3.2.3.4. Pearson Tip 3 Dağılımı (PE3)	
3.2.3.5. Genelleştirilmiş Pareto Dağılımı (GPA)	
3.2.3.6. 5 Parametreli Wakeby Dağılımı (WAK)	
3.2.4. Tahmin Edilen Değerlerin Doğruluğunun Belirlenmesi	
3.2.5. Monte Carlo Simülasyonu	40
3.2.5.1. Bölgesel L-moment Algoritmasının Simülasyonu için Algoritr	na41
3.2.6. Bilgisayar Programı	42

4. BULGULAR VE TARTIŞMA	44
4.1. Meriç Havzası	44
4.2. Marmara Havzası	50
4.3. Susurluk Havzası	55
4.4. Kuzey Ege Havzası	61
4.5. Gediz Havzası	66
4.6. Küçük Menderes Havzası	70
4.7. Büyük Menderes Havzası	75
4.8. Batı Akdeniz Havzası	83
4.9. Antalya Havzası	
4.10. Burdur Havzası	95
4.11. Akarçay Havzası	99
4.12. Sakarya Havzası	104
4.13. Batı Karadeniz Havzası	109
4.14. Yeşilırmak Havzası	113
4.15. Kızılırmak Havzası	121
4.16. Konya Havzası	133
4.17. Doğu Akdeniz Havzası	137
4.18. Seyhan Havzası	142
4.19. Asi Havzası	148
4.20. Ceyhan Havzası	
4.21. Firat Havzası	159
4.22. Doğu Karadeniz Havzası	169
4.23. Çoruh Havzası	174
4.24. Aras Havzası	179
4.25. Van Havzası	
4.26. Dicle Havzası	
5. SONUÇLAR	197
KAYNAKLAR	199
ÖZGEÇMİŞ	
EK 1. Türkiye Havzalarına Uyan Dağılımların Haritası	206

EK 2. Çalışmada Kullanılan Havzaların Haritaları	207
EK 3. Bilgisayar Programı için Örnek Data ve Çıktı Dosyaları	236

ÇİZELGELER DİZİNİ

Çizelge 4.1. Meriç Havzasına Ait Bilgiler	15
Çizelge 4.2. Meriç Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk	
Ölçüsü4	5
Çizelge 4.3. Meriç Havzasının Heterojenlik Ölçüsü	16
Çizelge 4.4. Uygunluk Testi Sonuçları	16
Çizelge 4.5. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)4	17
Çizelge 4.6. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel	l
olasılık dağılımının tekerrür fonksiyonu değerleri	17
Çizelge 4.7. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (Genelleştirilmiş Norma	al
Dağılım)	19
Çizelge 4.8. Marmara Havzasına Ait Bilgiler5	50
Çizelge 4.9. Marmara Havzasındaki İstasyonların L-moment Oranları ve	
Uyumsuzluk Ölçüsü	51
Çizelge 4.10. Marmara Havzasının Heterojenlik Ölçüsü	52
Çizelge 4.11. Uygunluk Testi Sonuçları	52
Çizelge 4.12. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
	52
Çizelge 4.13. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölges	el
olasılık dağılımının tekerrür fonksiyonu değerleri	53
Çizelge 4.14. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)	54
Çizelge 4.15. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)	54
Çizelge 4.16. Susurluk Havzasına Ait Bilgiler	56
Çizelge 4.17. Susurluk Havzasındaki İstasyonların L-moment Oranları ve	
Uyumsuzluk Ölçüsü	56
Çizelge 4.18. Susurluk Havzasının Heterojenlik Ölçüsü	57
Çizelge 4.19. Uygunluk Testi Sonuçları	57
Çizelge 4.20. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
	57

Çizelge 4.21. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel
olasılık dağılımının tekerrür fonksiyonu değerleri
Çizelge 4.22. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)59
Çizelge 4.23. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)59
Çizelge 4.24. Regresyon analizi sonuçları
Çizelge 4.25. Kuzey Ege Havzasına Ait Bilgiler61
Çizelge 4.26. Kuzey Ege Havzasındaki İstasyonların L-moment Oranları ve
Uyumsuzluk Ölçüsü62
Çizelge 4.27. Kuzey Ege Havzasının Heterojenlik Ölçüsü62
Çizelge 4.28. Uygunluk Testi Sonuçları
Çizelge 4.29. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
Çizelge 4.30. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel
olasılık dağılımının tekerrür fonksiyonu değerleri63
Çizelge 4.31. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3)64
Çizelge 4.32. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)65
Çizelge 4.33. Gediz Havzasına Ait Bilgiler
Çizelge 4.34. Gediz Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk
Ölçüsü67
Çizelge 4.35. Gediz Havzasının Heterojenlik Ölçüsü67
Çizelge 4.36. Uygunluk Testi Sonuçları
Çizelge 4.37. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
Çizelge 4.38. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel
olasılık dağılımının tekerrür fonksiyonu değerleri68
Çizelge 4.39. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)69
Çizelge 4.40. Küçük Menderes Havzasına Ait Bilgiler71
Çizelge 4.41. Küçük Menderes Havzasındaki İstasyonların L-moment Oranları ve
Uyumsuzluk Ölçüsü71
Çizelge 4.42. Küçük Menderes Havzasının Heterojenlik Ölçüsü
Çizelge 4.43. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)72

Çizelge 4.44. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)	
Çizelge 4.45. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel	
olasılık dağılımının tekerrür fonksiyonu değerleri	
Çizelge 4.46. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)74	
Çizelge 4.47. Büyük Menderes Havzasına Ait Bilgiler76	
Çizelge 4.48. Büyük Menderes Havzasındaki İstasyonların L-moment Oranları ve	
Uyumsuzluk Ölçüsü77	
Çizelge 4.49. Büyük Menderes Havzasının Heterojenlik Ölçüsü	
Çizelge 4.50. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)	
Çizelge 4.51. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)	
Çizelge 4.52. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel	
olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)	
Çizelge 4.53. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel	
olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge)	
Çizelge 4.54. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)80	
Çizelge 4.55. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)81	
Çizelge 4.56. Batı Akdeniz Havzasına Ait Bilgiler	
Çizelge 4.57. Batı Akdeniz Havzasındaki İstasyonların L-moment Oranları ve	
Uyumsuzluk Ölçüsü84	
Çizelge 4.58. Batı Akdeniz Havzasının Heterojenlik Ölçüsü	
Çizelge 4.59. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)	
Çizelge 4.60. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)	
Çizelge 4.61. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel	
olasılık dağılımının tekerrür fonksiyonu değerleri	
Çizelge 4.62. Batı Akdeniz Havzası için Bölgesel Büyüme Eğrisinin Doğruluk	
Ölçüleri (PE3)86	
Çizelge 4.63. Batı Akdeniz Havzası için Bölgesel Büyüme Eğrisinin Doğruluk	
Ölçüleri (GNO)87	

Çizelge 4.64.	Regresyon analizi sonuçları
Çizelge 4.65.	Antalya Havzasına Ait Bilgiler
Çizelge 4.66.	Antalya Havzasındaki İstasyonların L-moment Oranları ve
	Uyumsuzluk Ölçüsü
Çizelge 4.67.	Antalya Havzasının Heterojenlik Ölçüsü90
Çizelge 4.68.	Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)90
Çizelge 4.69.	Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
Çizelge 4.70.	Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel
	olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)91
Çizelge 4.71.	Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel
	olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge)91
Çizelge 4.72.	1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)93
Çizelge 4.73.	2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3)93
Çizelge 4.74.	Burdur Havzasına Ait Bilgiler95
Çizelge 4.75.	Burdur Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk
	Ölçüsü95
Çizelge 4.76.	Burdur Havzasının Heterojenlik Ölçüsü96
Çizelge 4.77.	Uygunluk Testi Sonuçları96
Çizelge 4.78.	Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
Çizelge 4.79.	Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel
	olasılık dağılımının tekerrür fonksiyonu değerleri
Çizelge 4.80.	Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)
Çizelge 4.81.	Regresyon analizi sonuçları
Çizelge 4.82.	Akarçay Havzasına Ait Bilgiler
Çizelge 4.83.	Akarçay Havzasındaki İstasyonların L-moment Oranları ve
	Uyumsuzluk Ölçüsü100
Çizelge 4.84.	Akarçay Havzasının Heterojenlik Ölçüsü100
Çizelge 4.85.	Uygunluk Testi Sonuçları101

Çizelge 4.86. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
)1
Çizelge 4.87. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölges	el
olasılık dağılımının tekerrür fonksiyonu değerleri10)2
Çizelge 4.88. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)10)3
Çizelge 4.89. Sakarya Havzasına Ait Bilgiler10)4
Çizelge 4.90. Sakarya Havzasındaki İstasyonların L-moment Oranları ve	
Uyumsuzluk Ölçüsü10)5
Çizelge 4.91. Sakarya Havzasının Heterojenlik Ölçüsü 10)6
Çizelge 4.92. Uygunluk Testi Sonuçları10)6
Çizelge 4.93. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
)6
Çizelge 4.94. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölges	el
olasılık dağılımının tekerrür fonksiyonu değerleri10)7
Çizelge 4.95. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO) 10)8
Çizelge 4.96. Regresyon analizi sonuçları)9
Çizelge 4.97. Batı Karadeniz Havzasına Ait Bilgiler	10
Çizelge 4.98. Batı Karadeniz Havzasındaki İstasyonların L-moment Oranları ve	
Uyumsuzluk Ölçüsü1	10
Çizelge 4.99. Batı Karadeniz Havzasının Heterojenlik Ölçüsü1	11
Çizelge 4.100. Uygunluk Testi Sonuçları1	11
Çizelge 4.101. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyd	e)
	11
Çizelge 4.102. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak	
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri1	12
Çizelge 4.103. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)1	12
Çizelge 4.104. Yeşilırmak Havzasına Ait Bilgiler	14
Çizelge 4.105. Yeşilırmak Havzasındaki İstasyonların L-moment Oranları ve	
Uyumsuzluk Ölçüsü1	15
Çizelge 4.106. Yeşilırmak Havzasının Heterojenlik Ölçüsü1	16
Çizelge 4. 107. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)1	16

Çizelge 4.108. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde
Çizelge 4.109. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)
Çizelge 4.110. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge)
Çizelge 4.111. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)
Çizelge 4.112. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)
Çizelge 4.113. Kızılırmak Havzasına Ait Bilgiler12
Çizelge 4.114. Kızılırmak Havzasındaki İstasyonların L-moment Oranları v
Uyumsuzluk Ölçüsü12
Çizelge 4.115. Kızılırmak Havzasının Heterojenlik Ölçüsü
Cizelge 4.116. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)
Cizelge 4,117. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzevde
12
Cizelge 4.118 Dönüs perivotlarına karsılık boyutsuz verilere uydurulan orta
bölgasal alaşılık dağılımının takarriir fonksiyonu dağarlari (1 Bölga
Çizelge 4.119. Donuş periyotlarına karşılık boyutsuz verilere uydurulan orta
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge
Çizelge 4.120. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan orta
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (3.Bölge
Çizelge 4. 121. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan orta
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (4.Bölge

Çizelge 4.122. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO
Çizelge 4.123. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3) 129
Çizelge 4.124. 3.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO
Çizelge 4.125. 4.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3) 130
Çizelge 4.126. Regresyon analizi sonuçları
Çizelge 4.127. Konya Havzasına Ait Bilgiler
Çizelge 4.128. Konya Havzasındaki İstasyonların L-moment oranları ve Uyumsuzlul
Ölçüsü133
Çizelge 4.129. Konya Havzasının Heterojenlik Ölçüsü134
Çizelge 4. 130. Uygunluk Testi Sonuçları
Çizelge 4.131. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde
Çizelge 4.132. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri13
Çizelge 4.133. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)130
Çizelge 4.134. Doğu Akdeniz Havzasına Ait Bilgiler137
Çizelge 4.135. Doğu Akdeniz Havzasındaki İstasyonların L-moment oranları ve
Uyumsuzluk Ölçüsü138
Çizelge 4.136. Doğu Akdeniz Havzasının Heterojenlik Ölçüsü
Çizelge 4.137. Uygunluk Testi Sonuçları
Çizelge 4.138. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde
Çizelge 4.139. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri140
Çizelge 4.140. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)140
Çizelge 4.141. Seyhan Havzasına Ait Bilgiler142
Çizelge 4.142. Seyhan Havzasındaki İstasyonların L-moment oranları ve
Uyumsuzluk Ölçüsü143
Çizelge 4.143. Seyhan Havzasının Heterojenlik Ölçüsü

Çizelge 4.144. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)144
Çizelge 4.145. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
Çizelge 4.146. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)
Çizelge 4.147. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge)
Çizelge 4.148. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)
Çizelge 4.149. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)
Çizelge 4.150. Asi Havzasına Ait Bilgiler
Çizelge 4.151. Asi Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk
Ölçüsü
Çizelge 4.152. Asi Havzasının Heterojenlik Ölçüsü149
Çizelge 4.153. Uygunluk Testi Sonuçları
Çizelge 4.154. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
Çizelge 4.155. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri150
Çizelge 4.156. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)151
Çizelge 4.157. Ceyhan Havzasına Ait Bilgiler
Çizelge 4.158. Ceyhan Havzasındaki İstasyonların L-moment oranları ve
Uyumsuzluk Ölçüsü153
Uyumsuzluk Ölçüsü
Uyumsuzluk Ölçüsü
Uyumsuzluk Ölçüsü

Çizelge 4.162. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal
bölgesel olasılık dağılımının tekerrür fonksiyonu değerler
(1.Bölge)155
Çizelge 4.163. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal
bölgesel olasılık dağılımının tekerrür fonksiyonu değerler
(2.Bölge)155
Çizelge 4.164. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO
Çizelge 4.165. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO
Çizelge 4.166. Fırat Havzasına Ait Bilgiler
Çizelge 4.167. Fırat Havzasındaki İstasyonların L-moment oranları ve Uyumsuzlul
Ölçüsü
Çizelge 4.168. Fırat Havzasının Heterojenlik Ölçüsü
Çizelge 4.169. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)
Çizelge 4.170. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde
Çizelge 4.171. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (Orta
Firat)
Çizelge 4.172. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (Aşağ
Firat)164
Çizelge 4.173. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (Yukar
Firat)164
Çizelge 4.174. Orta Fırat için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3
Çizelge 4.175. Aşağı Fırat için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüler
(GEV)

Çizelge 4.176.Yukarı Firat için Bolgesel Buyume Eğrisinin Doğruluk Ölçüler
(GLO)
Çizelge 4.177. Doğu Karadeniz Havzasına Ait Bilgiler170
Çizelge 4.178. Doğu Karadeniz Havzasındaki İstasyonların L-moment oranları ve
Uyumsuzluk Ölçüsü17
Çizelge 4.179. Doğu Karadeniz Havzasının Heterojenlik Ölçüsü
Çizelge 4.180. Uygunluk Testi Sonuçları
Çizelge 4.181. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde
Çizelge 4.182. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri 172
Çizelge 4.183. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)173
Çizelge 4.184. Regresyon analizi sonuçları
Çizelge 4.185. Çoruh Havzasına Ait Bilgiler175
Çizelge 4.186.Çoruh Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzlul
Öl
Olçusu1/:
Çizelge 4.187. Çoruh Havzasının Heterojenlik Ölçüsü
Giçusu 175 Çizelge 4.187. Çoruh Havzasının Heterojenlik Ölçüsü 176 Çizelge 4.188. Uygunluk Testi Sonuçları 176 Çizelge 4.189. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde 176 Çizelge 4.180. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal 176 Çizelge 4.190. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal 176 Çizelge 4.191. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO) 177 Çizelge 4.192. Aras Havzasına Ait Bilgiler 179 Çizelge 4.193. Aras Havzasındaki İstasyonların L-moment oranları ve Uyumsuzlul 179
Çizelge 4.187. Çoruh Havzasının Heterojenlik Ölçüsü 176 Çizelge 4.188. Uygunluk Testi Sonuçları 176 Çizelge 4.189. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde 176 Çizelge 4.189. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde 176 Çizelge 4.190. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal 176 Çizelge 4.190. Bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri 177 Çizelge 4.191. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO) 177 Çizelge 4.192. Aras Havzasına Ait Bilgiler 179 Çizelge 4.193. Aras Havzasındaki İstasyonların L-moment oranları ve Uyumsuzlul 179 Ölçüsü 179
Qizusu 175 Çizelge 4.187. Çoruh Havzasının Heterojenlik Ölçüsü 176 Çizelge 4.188. Uygunluk Testi Sonuçları 176 Çizelge 4.189. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde 176 Çizelge 4.190. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal 176 Çizelge 4.190. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal 177 Çizelge 4.191. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO) 177 Çizelge 4.192. Aras Havzasına Ait Bilgiler 179 Çizelge 4.193. Aras Havzasındaki İstasyonların L-moment oranları ve Uyumsuzlul 179 Çizelge 4.194. Aras Havzasının Heterojenlik Ölçüsü 180
Qiçusu 175 Çizelge 4.187. Çoruh Havzasının Heterojenlik Ölçüsü 176 Çizelge 4.188. Uygunluk Testi Sonuçları 176 Çizelge 4.189. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde 176 Çizelge 4.180. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal 176 Çizelge 4.190. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal 177 Çizelge 4.191. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO) 177 Çizelge 4.192. Aras Havzasına Ait Bilgiler 179 Çizelge 4.193. Aras Havzasındaki İstasyonların L-moment oranları ve Uyumsuzlul 179 Çizelge 4.194. Aras Havzasının Heterojenlik Ölçüsü 180 Çizelge 4.195. Uygunluk Testi Sonuçları 180
Qizusu 175 Çizelge 4.187. Çoruh Havzasının Heterojenlik Ölçüsü 176 Çizelge 4.188. Uygunluk Testi Sonuçları 176 Çizelge 4.189. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde 176 Çizelge 4.190. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal 176 Çizelge 4.190. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortal 177 Çizelge 4.191. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO) 177 Çizelge 4.192. Aras Havzasına Ait Bilgiler 179 Çizelge 4.193. Aras Havzasındaki İstasyonların L-moment oranları ve Uyumsuzlul 179 Çizelge 4.194. Aras Havzasının Heterojenlik Ölçüsü 180 Çizelge 4.195. Uygunluk Testi Sonuçları 180 Çizelge 4.196. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde

Çizelge 4.197. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri181
Çizelge 4.198. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)182
Çizelge 4.199. Van Havzasına Ait Bilgiler
Çizelge 4.200. Van Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk
Ölçüsü
Çizelge 4.201. Van Havzasının Heterojenlik Ölçüsü
Çizelge 4.202. Uygunluk Testi Sonuçları
Çizelge 4.203. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
Çizelge 4.204. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri185
Çizelge 4.205. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)186
Çizelge 4.206. Dicle Havzasına Ait Bilgiler
Çizelge 4.207. Dicle Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk
Ölçüsü
Çizelge 4.208. Dicle Havzasının Heterojenlik Ölçüsü
Çizelge 4.209. Uygunluk Testi Sonuçları
Çizelge 4.210. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)
Çizelge 4.211. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak
bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri190
Çizelge 4.212. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)190
Çizelge 4.213. Türkiye deki herbir Hidrolojik Havzaya ait En uygun dağılımın Ters
fonksiyonları192
Çizelge 4.214. Türkiyedeki Havzaların bazı istatistiksel parametrelerinin en uygun
dağılımlara göre sıralanması195

ŞEKİLLER DİZİNİ

SAYFA

Şekil 3.1. Uyumsuzluk için tanım grafiği16
Şekil 4.1. Meriç Havzasına Ait Taşkın Frekans Eğrileri
Şekil 4.2. Meriç Havzasın Alan-q(birim debi) ilişkisi
Şekil 4.3. Marmara Havzasına Ait Taşkın Frekans Eğrileri53
Şekil 4.4. Marmara Havzasının Alan-Q(Debi) ilişkisi
Şekil 4.5. Susrluk Havzasına Ait Taşkın Frekans Eğrileri
Şekil 4.6. Susurluk Havzasının Alan-Q(Debi) ilişkisi60
Şekil 4.7. Kuzey Ege Havzasına Ait Taşkın Frekans Eğrileri64
Şekil 4.8. Kuzey Ege Havzasının Alan-Q(Debi) ilişkisi
Şekil 4.9. Gediz Havzasına Ait Taşkın Frekans Eğrileri
Şekil 4.10. Gediz Havzasının Alan-q(Birim Debi) ilişkisi70
Şekil 4.11. Küçük Menderes Havzasına Ait Taşkın Frekans Eğrileri
Şekil 4.12. Küçük Menderes Havzasının Alan-Qort ilişkisi75
Şekil 4.13. Büyük Menderes Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)80
Şekil 4.14. Büyük Menderes Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)80
Şekil 4.15. Büyük Menderes Havzasının Alan-Qort ilişkisi (1.Bölge)
Şekil 4.16. Büyük Menderes Havzasının Alan-Qort ilişkisi (2.Bölge)
Şekil 4.17. Batı Akdeniz Havzasına Ait Taşkın Frekans Eğrileri
Şekil 4.18. Batı Akdeniz Havzasının Alan-Qort ilişkisi
Şekil 4.19. Antalya Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)92
Şekil 4.20. Antalya Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)92
Şekil 4.21. Antalya Havzasının Alan-q ilişkisi (1.Bölge)94
Şekil 4.22. Antalya Havzasının Alan-q ilişkisi (2.Bölge)95
Şekil 4.23. Burdur Havzasına Ait Taşkın Frekans Eğrileri97
Şekil 4.24. Burdur Havzasının Kot-Qort ilişkisi
Şekil 4.25. Akarçay Havzasına Ait Taşkın Frekans Eğrileri102
Şekil 4.26. Akarçay Havzasının Alan-q ilişkisi103
Şekil 4.27. Sakarya Havzasına Ait Taşkın Frekans Eğrileri
Şekil 4.28. Sakarya Havzasının Alan-q ilişkisi

Şekil 4.29. Batı Karadeniz Havzasına Ait Taşkın Frekans Eğrileri	112
Şekil 4.30. Batı Karadeniz Havzasının Alan-Qort ilişkisi	113
Şekil 4.31. Yeşilırmak Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)	118
Şekil 4.32. Yeşilırmak Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)	118
Şekil 4.33. Yeşilırmak Havzasının Alan-q ilişkisi (1.Bölge)	120
Şekil 4.34. Yeşilırmak Havzasının Alan-q ilişkisi (2.Bölge)	121
Şekil 4.35. Kızılırmak Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)	127
Şekil 4.36. Kızılırmak Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)	127
Şekil 4.37. Kızılırmak Havzasına Ait Taşkın Frekans Eğrileri (3.Bölge)	128
Şekil 4.38. Kızılırmak Havzasına Ait Taşkın Frekans Eğrileri (4.Bölge)	128
Şekil 4.39. Kızılırmak Havzasının Alan-q ilişkisi (1.Bölge)	131
Şekil 4.40. Kızılırmak Havzasının Alan-q ilişkisi (2.Bölge)	131
Şekil 4.41. Kızılırmak Havzasının Alan-q ilişkisi (3.Bölge)	132
Şekil 4.42. Kızılırmak Havzasının Alan-q ilişkisi (4.Bölge)	132
Şekil 4.43. Konya Havzasına Ait Taşkın Frekans Eğrileri	135
Şekil 4.44. Konya Havzasının Alan-Q(Debi) ilişkisi	137
Şekil 4.45. Doğu Akdeniz Havzasına Ait Taşkın Frekans Eğrileri	140
Şekil 4.46. Doğu Akdeniz Havzasının Alan-Qort(Debi) ilişkisi	141
Şekil 4.47. Seyhan Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)	145
Şekil 4.48. Seyhan Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)	145
Şekil 4.49. Seyhan Havzasının Alan-q ilişkisi (1.Bölge)	147
Şekil 4.50. Seyhan Havzasının Alan-q ilişkisi (2.Bölge)	148
Şekil 4.51. Asi Havzasına Ait Taşkın Frekans Eğrileri	151
Şekil 4.52. Asi Havzasının Alan-q ilişkisi	152
Şekil 4.53. Ceyhan Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)	156
Şekil 4.54. Ceyhan Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)	156
Şekil 4.55. Ceyhan Havzasının Alan-Qort ilişkisi (1.Bölge)	158
Şekil 4.56. Ceyhan Havzasının Alan-q ilişkisi (2.Bölge)	159
Şekil 4.57. Orat Fırat Havzasına Ait Taşkın Frekans Eğrileri	165
Şekil 4.58. Aşağı Fırat Havzasına Ait Taşkın Frekans Eğrileri	165
Şekil 4.59. Yukarı Fırat Havzasına Ait Taşkın Frekans Eğrileri	165

Şekil 4.60. Orta Fırat Havzasının Alan-Qort ilişkisi	8
Şekil 4.61. Aşağı Fırat Havzasının Alan-Qort ilişkisi16	8
Şekil 4.62. Yukarı Fırat Havzasının Alan-Qort ilişkisi16	9
Şekil 4.63. Doğu Karadeniz Havzasına Ait Taşkın Frekans Eğrileri	2
Şekil 4.64. Doğu Karadeniz Havzasının Alan-q ilişkisi174	4
Şekil 4.65. Çoruh Havzasına Ait Taşkın Frekans Eğrileri17	7
Şekil 4.66. Çoruh Havzasının Alan-q ilişkisi17	8
Şekil 4.67. Aras Havzasına Ait Taşkın Frekans Eğrileri18	1
Şekil 4.68. Aras Havzasının Alan-q ilişkisi	3
Şekil 4.69. Van Havzasına Ait Taşkın Frekans Eğrileri	6
Şekil 4.70. Van Havzasının Alan-q ilişkisi	7
Şekil 4.71. Dicle Havzasına Ait Taşkın Frekans Eğrileri	0
Şekil 4.72. Dicle Havzasının Alan-q ilişkisi	1
Şekil 4.73. Türkiye deki hidrolojik havzalara uyan en uygun dağılımların yüzdelik	
payı194	4
Şekil 4.74. Türkiyedeki havzaların L_çarpıklık(t3) ve L_basıklık(t4) ilişkisi 19	6

1.GİRİŞ

Akarsu veya dere yataklarındaki su seviyesinin şiddetli ve uzun süreli yağışlar ve ani kar erimeleri nedeni ile hızla artması ve nehrin yatağından taşarak çevresinde yaşayan canlılara, arazilere ve mallara zarar vermesi olayına taşkın denir. Taşkınlar gerek ülkemizde gerekse İngiltere, Hollanda, Çin vb. dünyanın gelişmiş ülkelerinde bile önemli derecede can ve mal kayıplarına sebep olmaktadır. Taşkınlar bir hafta veya daha uzun sürede oluşabileceği gibi, kısa sürede meydana gelen ani taşkınlar şeklinde de ortaya çıkabilir.

Ülkemizde, doğal bitki örtüsünün tahribatı, çarpık şehirleşme ve akarsu ile dere yataklarındaki yapılaşmadan dolayı taşkınların neden olduğu zararlar artmakta, son yıllarda bu tip felaketler daha sık görülmektedir. 1998 Mayıs ayında, Batı Karadeniz'de meydana gelen taşkından 37000 km² alan ve 2.2 milyon insan etkilenmiş ve 2 kişi hayatını kaybetmiştir. 151 nehir yatağından dışarı taşmış ve 478 ev tamamen su altında kalmıştır. 2002 Temmuz ayında şiddetli yağışların meydana getirdiği taşkın, Rize, Yozgat, Çorum, Tokat, Sakarya, Kars ve Muş'ta 40 kişinin ölümüne sebep olmuştur. 2001 Mayıs ayında Hatay da şiddetli yağışlar nedeni ile benzeri uzun yıllardır görülmemiş bir taşkın afeti yaşanmıştır. İlçe merkezi başta olmak üzere çok sayıda yerleşim biriminde yaşam felce uğramıştır. Özellikle altyapı olmak üzere birçok tesiste önemli tahribat meydana gelmiş, binlerce dönüm tarım arazisindeki ürünler heba olmuştur.

Günümüzde birçok su yapısının tasarımında, taşkın kontrolünün planlama ve projelendirilmesi önemli bir yer tutmaktadır. Bu tür çalışmalarda maksimum yağışların ve akışların analizi önem kazanmaktadır. Bir yerleşim alanında tasarlanacak drenaj çalışmaları için 2 ve 5 yıl tekerrür süreli maksimum yağış şiddetine ihtiyaç varken, erozyon ve sediment kontrol çalışmalarında 25 yıllık, baraj, gölet ve sulama tesisleri gibi yapılar için 100 yıllık tekerrür periyoduna sahip maksimum yağış ve akış değerlerine ihtiyaç vardır. Bu nedenle ülkemizde Devlet Su İşleri (DSİ) ve Elektrik İşleri Etüd İdaresinin (EİEİ) akarsular üzerinde kurmuş olduğu akım gözlem istasyonlarından elde edilen maksimum yıllık akış kullanılarak tahmin edilir. Analizde kullanılan istasyonların gözlem süreleri ne kadar uzun olursa tahmin edilen tekerrür değerleri gerçek değerlere o kadar yakın olur. Böylece gelebilecek taşkının büyüklüğü önceden tahmin edilerek zararın minimuma indirilmesi için önlemler alınır.

Bu çalışmada dağılım parametrelerini tahmin etmek için L-momentler tekniği kullanılarak Türkiye'de bulunan 26 havzadaki 455 istasyona ait su yılı maksimum akım değerlerine bölgesel frekans analizi uygulanmıştır. Bölgeselleştirme tekniği gösterge-sel metodunda (Index Flood Method) L-momentlerin olarak, kullanılmasıyla elde edilen L-moment algoritması kullanılmıştır. Elde edilen homojen bölgelere Genelleştirilmiş Normal, Genelleştirilmiş Ekstrem Değer, Genellestirilmis Lojistik, Genellestirilmis Pareto, Pearson Tip III ve Wakeby dağılımları uygulanarak tekerrür değerleri elde edilmiştir. Tahmin edilen tekerrür değerlerinin doğruluğu Monte Carlo Simülasyonu ile elde edilmiştir. Analizler, Hosking (2000) tarafından Amerika'da IBM araştırma merkezinde hazırlanmış olan alt programlar aracılığı ile gerçekleştirilmiştir. Bu programlar her bir dağılım için ayrı ayrı düzenlenerek çalıştırılmış ve çıktılar yorumlanmıştır.

2. ÖNCEKİ ÇALIŞMALAR

Taşkın hesaplarında deterministik yöntemler ve istatistiki yöntemler kullanılır. Sentetik birim hidrograf yöntemleri ve ampirik formüller deterministik olup, ortalama havza yağışı, sızma kayıpları ve birim hidrograf biçimi üzerine yapılan kabullerden dolayı hatalar içerir. İstatistiki yöntemlerle bulunan sonuçlarda ise gözlem süresinin kısalığı ve örneklemeden doğan noktasal hatalar bulunur. Her iki yöntemin içerdiği hataları en aza indirebilmek için fizyografik ve meteorolojik yönden benzer havzalarda kullanılmak üzere geliştirilen bölgesel taşkın frekans analiz yöntemi yaygın olarak kullanılmaktadır.

Bölgesel taşkın frekans analizi 2 adımdan oluşmaktadır.

- 1. Taşkın alanlarını homojen bölgelere ayırmak
- 2. İlgili taşkın alanlarındaki bölgesel taşkın miktarını tahmin etmek.

Tüm hidrolojik verilere uygulanabilen frekans analizi sayesinde projelerin maliyetleri önemli ölçüde azalmaktadır. Analizi gerçekleştirecek hidrolojik verilerin uzunluğu ne kadar fazla olursa, analizden elde edilecek sonuçlar o derece doğru ve sağlıklı olur. Dağılım parametrelerini tahmin etmek için birçok yöntem kullanılmaktadır. Bunlardan bazıları; momentler yöntemi, maksimum olabilirlik yöntemi, en küçük kareler yöntemi, grafik yöntem, olasılık ağırlıklı momentler yöntemi ve L-momentler yöntemidir. L-momentler yöntemi, olasılık ağırlıklı momentler yönteminin lineer bir fonksiyonudur.

3 veya 4 parametreli dağılımlar verilerle ilgili bağıntı geliştirmek için yüksek esnekliğe sahiptirler. 3 parametreli dağılımların tahminlerinin taraflılığı genellikle çok küçüktür ve küçük örneklerde bile ihmal edilirler. Bununla birlikte bazı tahminlerin standart sapmaları kabul edilemeyecek büyüklükte olabilir. Diğer taraftan 2 parametreli dağılımlar (EV1, LN2) kabul edilebilir küçük standart sapmalara sahiptirler, fakat bunlar oldukça yüksek taraflılığa sahip olabilirler.

Dalrymple (1960), çalışmasında akarsu üzerinde gözlem istasyonu olsun veya olmasın herhangi bir yerdeki anlık maksimum debinin frekansını ve büyüklüğünü hesaplamak için U.S. Jeolojik Araştırma Kurumu (U.S.G.S.) tarafından kullanılan

gösterge sel metodunu anlatmıştır. Bu metod bölge hidrolojik olarak homojen olduğu sürece her boyutta havzaya uygulanabilir.

Haktanır (1982), noktalama pozisyonu formüllerini ve ihtimal dağılım modellerini kapsayan, işlem zamanı kısa, bir ile yirmi adet arasında 10000 yıla kadar tekerrür sürelerini seçme imkanı veren bir taşkın frekans analizi bilgisayar programı geliştirmiştir. Bu program aynı zamanda Chi² ve Kolmogorov-Simirnov uygunluk testleri yaparak dağılım modellerinin eldeki örneğe uygunluğunu tespit edebilmektedir. Bu program yardımı ile Seyhan ve Ceyhan havzalarında bulunan 6 akım gözlem istasyonunun taşkın pik serilerine 7 dağılım uygulamış ve en uygun dağılımların Log-Gama ve Log-Normal dağılımları olduğunu belirlemiştir.

Hosking ve ark. (1985a), Lettenmaier ve Potter (1985), Wallis ve Wood (1985), Lettenmaier ve ark. (1987), Hosking ve Wallis (1988), Potter ve Lettenmaier (1990) çalışmalarında L-momentler veya olasılık ağırlıklı momentlere dayalı gösterge sel metodunun güçlü ve doğru tahminler verdiğini göstermişlerdir. Çok sayıda simülasyon çalışmaları göstermiştir ki, "L-Momentler Yöntemi", parametrelerin tahminlerinin ortalama karekök hataları dikkate alındığında, "Momentler Yöntemi", "Maksimum Olabilirlik yöntemi", "En Küçük Kareler Yöntemi", "Grafik Yöntem" ve "Olasılık Ağırlıklı Momentler Yöntemi" nden daha yaklaşık sonuçlar vermektedir (Hosking ve Wallis, 1987; Rosbjerg ve ark., 1992).

Wiltshire (1986), bölgesel taşkın frekans analizi için havzayı homojen alt bölgelere ayırmada bir yöntem tanımlayarak, gruplandırmanın etkinliğini belirlemede yapılacak istatistik çalışmaları optimize eden ve havza karakteristiklerine dayanan bir araştırma yapmıştır.

Potter ve Lettenmaier (1990), taşkın tahmininde en iyi sonuçların bölgesel bir GEV dağılımı ile elde edileceğini söylerken, Cunnane (1988), bölgesel bir Wakeby dağılımı ile gösterge sel metodunun mevcut en iyi bölgesel yöntem olduğunu belirtmiştir.

Hosking (1990) tarafından yayımlanan makale belki de son yıllarda en çok dikkat çeken taşkın frekans analizi ile ilgili makaledir. Bu çalışmada L-momentler yöntemi tanıtılmaktadır. L-momentler yöntemi parametre tahmini, bölgeselleştirme ve dağılım tanımlama ile ilgili çeşitli problemleri çözmede popülerliğini

4

korumaktadır. L-momentler yöntemi olasılık ağırlıklı momentler (PWM) yönteminin lineer bir fonksiyonudur. Bununla birlikte L-momentler yöntemi ile dağılımın şekil ölçüsünü açıklayabilmek olasılık ağırlıklı momentler yönteminden daha kolay ve uygundur. L-momentler yöntemi istatistiksel dağılımı daha anlamlı bir yolla özetleme yeteneğine sahiptir. Çünkü L-momentler yöntemi örnek değerlerin lineer fonksiyonudur. L-momentler yöntemi aynı zamanda rölatif olarak küçük değişimler gösterir. L-moment oran tahminleri özellikle klasik eğrilik katsayıları basıklıkla (kurtosis) karşılaştırıldığı zaman küçük değişimlere ve eğimlere sahiptir.

Özcan (1990), çalışmasında son 10 yılın dünya hidroloji literatüründe popülarite kazanmış, altı farklı dağılım modelini, iki veya üç farklı parametre tahmin yöntemleri ile hesaplayıp noktasal taşkın frekans analizi yapan bir bilgisayar modeli geliştirmiştir. Bu modeli, Türkiye doğal akarsuları içinde 23 havza üzerindeki 21 yıl ve daha uzun süreli 112 adet istasyonun yıllık taşkın pikleri serilerine uygulayarak, bu istasyon verilerine Log-Pearson 3 ve Log-Lojistik dağılımlarının en iyi uyumu gösterdiğini tespit etmiştir.

Haktanır (1991), Türkiye' de 23 havzada 21 yıldan daha uzun kayıtlı 112 istasyona Log-Normal, Gumbel, Smemax, Log-Boughton, Log-Lojistik, Pearson 3 ve Log-Pearson 3 dağılımlarını uygulayarak bu dağılımların parametrelerini momentler, maksimum olabilirlik ve olasılık ağırlıklı momentler yöntemine göre belirlemiştir. Ki kare ve Kolmogorov-Simirnov uygunluk testlerinin sonucunda Log-Lojistik ve Log-Pearson 3 dağılımlarının Türkiye akarsuları için diğerlerine göre daha uygun olduğunu belirtmiştir.

Önöz (1992), çalışmasında çeşitli bölgesel taşkın frekans analiz yöntemlerini ele alarak hazırladığı bilgisayar programı ile Yeşilırmak havzasında homojen olarak belirlenen iki bölgede 11 istasyonun yıllık maksimum debilerini kullanarak boyutsuz taşkın frekans eğrileri elde etmiştir. Sonuçta, yinelenme aralığının küçük değerlerinde eğrilerin gözlenmiş değerlere çok iyi uyduğunu, yinelenme aralığı büyüdükçe yöntemler arasındaki farklılığın arttığını göstermiştir.

Vogel ve Fennessey (1993), varyasyon katsayısı (c_v), çarpıklık katsayısı (γ) ve basıklık (kurtosis) katsayısının (κ) klasik moment oran tahminlerinin küçük

örneklemler için gösterdiği hata ve uyuşmazlığı Massachusetts'deki 23 gözlem istasyonunun günlük akım değerleri için L-moment oranları ile karşılaştırmışlar ve L-moment oran tahminlerinin hemen hemen tarafsız olduğunu çalışmalarında savunmuşlardır.

Haktanır ve Horlacher (1993), Almanya'da Rhine havzasında 11 ve İskoçya'da 2 akarsuda en az 30 yıllık taşkın piklerine sahip toplam 13 akarsuya 9 farklı olasılık dağılımını maksimum olabilirlik ve olasılık ağırlıklı momentler yöntemi ile uygulamışlardır. Genelleştirilmiş Ekstrem Değerler ve Log-Normal 3 dağılımlarının 100 yıl tekerrür periyotlu taşkınları tahmin etmede kullanılan diğer dağılımlardan daha iyi olduğu sonucuna varmışlardır.

Hosking ve Wallis (1993), bölgesel çalışmalarda kullanmak için çok sayıda testler geliştirmiştir. Onlar bir taşkın yeri grubunun homojenlik derecesini anlamak için yöntemler sunmuştur. L-moment diyagramları bölgesel bir dağılımı tanımlamada birçok araştırmacı tarafından kullanılmıştır (Chowdhury ve ark. (1991), Pilon ve Adamowski (1992), Vogel ve Fenessey (1993), Vogel ve ark. (1993), Saf (2009)).

Hosking ve Wallis (1993) bölgesel taşkın frekans analizinde kullanılan üç istatistiği şu şekilde tanımlamışlardır: 1. Uyuşmazlık (discordancy) ölçüsü: bölgede sıradışı istasyonları tanımlamak için kullanılır, 2. Heterojenlik ölçüsü: bölgenin homojen olup olmadığını belirlemek için kullanılır, 3. Uygunluk ölçüsü: seçilen dağılımın datalara uyum sağlayıp sağlamadığını belirlemek amacı ile kullanılır.

Önöz (1994), çalışmasında literatürde mevcut olan olasılık ağırlıklı momentler yöntemini tanıtmış ve diğer yöntemlere olan üstünlüklerini açıklamıştır. Kolay uygulanabilmesi nedeniyle geniş kullanım alanı bulmuş olan bu yöntemle hidrolojide sıkça kullanılan bazı olasılık dağılımlarının parametre tahminlerini vermiştir.

Haktanır ve Çapar (1994), Türkiye'de henüz yaygın olarak kullanılmayan modelleri de içeren momentler ve maksimum olabilirlik klasik yöntemlerinin yanında, entropy ve olasılık ağırlıklı momentler yöntemlerini de içeren ve toplam 28 farklı olasılık dağılım modeline göre taşkın frekans analizi hesaplarını yapan bir bilgisayar programı geliştirmiştir. Programda, Ki kare, Kolmogorov-Simirnov ve Crammer Von Mises uygunluk testleri de uygulanabilmekte ve istenen modelin tekrarlanma eğrileri Gumbel olasılık kağıdına çizilebilmektedir.

Rao ve Hamed (1997), Wabash havzasının bölgesel taşkın frekans analizini L-momentler tekniğini kullanarak yapmışlardır. Tek bölge olarak heterojen olan Wabash havzasını coğrafi olarak 4 alt bölgeye ayırmışlardır. Bu bölgelerin homojenlik derecelerini Wiltshire'ın homojenlik testini ve L-moment oranlarını kullanarak hesaplamışlardır. Homojen ve heterojen bölgeler için Pearson 3, GEV, Genelleştirilmiş Lojistik, Log Normal dağılımlarını uygulamışlar ve uygunluk testleri ile en uygun dağılımları noktasal ve bölgesel düzeyde belirlemişlerdir.

Büyükkaracığan (1997), çalışmasında Konya havzasında bulunan 13 akarsuya ait yıllık pik akım serilerine en uygun olasılık dağılım modellerinin belirlenmesi için, iki ve Genelleştirilmiş Log-Normal, Gumbel, Pearson-3, Log-Pearson-3, Log-Boughton, Log-Lojistik, Ekstrem Değer dağılımlarını uygulamıştır. Bu dağılımların çoğunun parametreleri momentler, maksimum olabilirlik, olasılık ağırlıklı momentler ve L-momentler yöntemi ile tahmin edilmiştir. Yapılan uygunluk testlerinin sonucunda Log-Pearson 3 dağılımı diğer dağılımlara göre daha iyi sonuçlar vermiştir.

Parida ve ark. (1998), makalelerinde mahi-sabarmati havzasının (3-a) alt bölgesi için uygun frekans dağılımını L-momentler ve gösterge-sel yöntemini kullanarak araştırmışlardır. Bu bölgeden 12 istasyon seçmişler ve bu istasyonların homojen olduklarını göstermişlerdir. Genelleştirilmiş Normal dağılımı en uygun dağılım olarak tespit etmişler, ortalama yıllık taşkınlar ile havza alanı arasında bir ilişki kurarak istasyon olmayan bölgeler içinde bölgesel taşkın frekans ilişkisi geliştirmişlerdir.

Okur (1999), çalışmasında L-momentleri ve bölgesel frekans analizini içeren bir bilgisayar programı geliştirmiş ve batı karadeniz bölgesine uygulamıştır.

Onüçyıldız (1999), çalışmasında Türkiye akarsuları üzerinde bulunan 47 adet akım gözlem istasyonuna ait en kesitler ile bu enkesitlerde gözlenen yıllık anlık maksimum akım değerlerini incelemiştir. 47 istasyondan 10 tanesinin kayıt uzunluğu daha fazla olması nedeni ile bu istasyonlara Log-Pearson Tip 3 dağılımını uygulamış, incelenen istasyonlar içinde belirlenen minimum taşkın debisinin aşılma olasılığı en fazla olan istasyonun 601 nolu AGİ, taşkın debisinin aşılma olasılığı en az olan istasyonun ise 302 nolu AGİ olduğunu belirlemiştir.

Şorman ve Okur (2000), makalelerinde bölgeselleştirme tekniği olarak gösterge sel metodunu, tahmin edilen tekerrür değerlerinin doğruluğu için Monte Carlo simülasyonunu kullanmışlardır. Analizleri iki aşamada gerçekleştirmişler, ilave gözlenmiş verilerin sonuçlar üzerindeki etkisini araştırmışlardır. Birinci aşama içinde uç noktaların ve simülasyon sayısının etkisini incelemişlerdir. Batı Karadeniz bölgesinde Mayıs 1998 de görülen selin akım değerlerinin dönüş aralıklarını da analiz etmişlerdir.

Muhara (2001), çalışmasında Kenya da bulunan Tanzania bölgesindeki istasyonlar için bölgesel istatistiksel dağılımları ve hidrolojik olarak homojen bölgeleri L-momentler diyagramları yardımıyla tespit etmiştir. Homojen bölgeler ve tüm Tanzania için lineer regresyon modeli belirlemiştir. Bu çalışmanın sonucunda Tanzania da bulunan 12 bölgeden 2 sinde Log-Lojistik dağılımının, 1 inde Genelleştirilmiş Pareto dağılımının, 4 ünde 3 parametreli Log Normal dağılımının ve 4 ünde Pearson Tip 3 dağılımının uygunluk gösterdiğini tespit etmiştir. Bir analiz için yeterince dataya sahip olmadığını, Tanzania yı tek bölge olarak incelediğinde de anlık yıllık maksimum akımlara Pearson Tip 3 dağılımının uyduğunu belirlemiştir.

Seckin (2002), çalışmasında Seyhan ve Ceyhan havzaları için bölgesel taşkın frekans analizini boyutsuz olarak incelemiş ve güçlü taşkın tahminlerine imkan veren modelleri yapılan testler sonucunda belirlemiştir. Bölgeyi homojen bölgelere ayırmak için Wiltshire'ın geliştirdiği çarpıklık katsayısına dayanan yöntemi, parametre tahmini için ise momentler yöntemi ile olasılık ağırlıklı momentler yöntemini kullanmıştır. Homojen alt bölgelere genelde Wakeby dağılımının en iyi uyumu sağladığını tespit etmiştir.

Jaiswal ve ark. (2003), çalışmalarında Hindistan'daki Beas havzasının taşkın frekans modeli için L-momentler tekniğini kullanmışlardır. Bu havzadaki 8 istasyonun taşkın serilerine EV-I, GEV, Lojistik, Genelleştirilmiş Lojistik, Genelleştirilmiş Pareto, Normal ve Log Normal dağılımlarını uygulamışlar ve Lmomentlere dayalı uygunluk testi sonucunda GEV dağılımının Beas havzası taşkınlarının tahminlerinde en uygun dağılım olduğunu belirlemişlerdir.

8

Kumar ve ark. (2003a), Kuzey Brahmaputra nehir havzasının bölgesel taşkın formüllerini istasyonlu ve istasyonsuz noktalar için L-momentler tekniğini kullanarak geliştirmişlerdir. Çalışmalarında 10 adet istasyona literatürde yaygın olarak kullanılan dağılımları uygulamışlar ve GEV dağılımının en iyi tahmine sahip olduğunu belirlemişlerdir. Yıllık maksimum debi ve havza alanı arasındaki ilişkiyi grafiksel olarak belirleyip çeşitli alanlara ve dönüş periyoduna karşılık gelebilecek taşkının debisini tablolaştırmışlardır.

Kumar ve ark. (2003b), Hindistan'daki Orta Ganj ovasının 1(f) alt bölgesi için bölgesel taşkın frekans analizi yapmışlardır. Literatürde yaygın olarak kullanılan dağılımları uygulamış ve bu dağılımların parametrelerini L-momentler yöntemi ile elde etmişlerdir. Z testine göre GEV dağılımını en uygun dağılım seçmişlerdir. Ortalama yıllık taşkınlar ile havza alanı arasında bir ilişki kurarak istasyon olmayan bölgeler içinde bölgesel taşkın frekans ilişkisi geliştirmişlerdir.

Şorman (2004), çalışmasında klasik parametre tahmin yöntemlerini (momentler yöntemi, maksimum olabilirlik yöntemi) olasılık ağırlıklı momentler yöntemi ile karşılaştırmış ve bu karşılaştırmaya uygunluk testlerini de ilave etmiştir. L-momentler yöntemi ile noktasal dağılım parametrelerini tahmin etmiş ve Batı Karadeniz'deki akım verileri ile örneklemiştir. Daha sonra bölgesel frekans analiz çalışmasında bölge büyüme oranlarını bulmuştur. Her bir ölçüm noktasının ve tüm noktaların ortalama en küçük hata değerlerini hesap ederek güven aralıklarını tespit etmiştir. Bölgeselleştirme ve mevcut kaydedici istasyonlar arası korelasyon katsayısı ve kayıt sürelerini hesaba katmıştır.

Homojenlik için 10 yıllık boyutsuz taşkın tahminlerine dayanan alternatif bir test Lu ve Stedinger (1992a) tarafından geliştirilmiştir.

Chowdhury ve ark. (1991) bölgesel GEV dağılımı için çok sayıda uygunluk testlerini karşılaştırmış ve yeni bir ki kare testi geliştirmiştir. Bu test L-değişim katsayısına ve L-eğrilik katsayısına dayanmaktadır. Ortalama ihtimal ağırlıklı momentlerin hesaplanan bölgesel büyüme eğrileri son yıllardaki çalışmalarda sıklıkla kullanılmıştır. Bölgesel frekans yöntemlerinin karşılaştırılması büyük önem verilmesi gereken bir husustur. Monte Carlo simülasyonu farklı tahmin yöntemlerini karşılaştırmak için çok sayıda çalışmada kullanılmıştır. Pratikte daima karşılaşılabilecek bölgesel heterojenliği hesaba katan simülasyon deneylerinin tasarımı tam sonuçlar elde etmek için oldukça önemlidir. Bazı bölgesel tahmin yöntemleri heterojenliğe karşı oldukça hassastır. Bundan dolayı heterojenlik ölçümünün hesaplara dahil edilmesi adil bir karşılaştırma için esastır.

Özkan (2005), Küçük Menderes ve Büyük Menderes havzalarını tek bir bölge olarak kabul etmiş ve buradaki toplam 45 adet akım gözlem istasyonlarına ait yıllık maksimum akış verilerini kullanarak bölgesel analiz yapmıştır. Student-t ve Dalrymple yöntemlerini kullanarak havzalardaki homojen olmayan gözlem istasyonlarını tanımlamıştır. Homojenlik şartlarını sağlamayan istasyonları çıkarttıktan sonra çarpıklık ve değişkenlik katsayılarının bölgesel değerlerini tahmin etmiş ve bunlarla ilgili bölgesel bağıntılar çıkartmıştır. Gumbel dağılımını esas alarak bölgesel boyutsuz taşkın katsayılarını hesaplamıştır.

Atiem ve Harmancıoğlu (2006), makalelerinde Nil nehri üzerindeki 14 adet akım gözlem istasyonuna gösterge sel metodunu kullanarak L-momentler yaklaşımı ile taşkın frekans analizi yapmışlardır. Bu istasyonlara literatürde yaygın olarak kullanılan 5 farklı dağılım modelini noktasal olarak uygulamışlar ve 4 istasyon için Genelleştirilmiş Lojistik (GLO), 2 istasyon için Pearson Tip 3 (PE3), 2 istasyon için Genelleştirilmiş Ekstrem Değerler (GEV), 1 istasyon için Genelleştirilmiş Normal dağılımı (GNO), 1 istasyon için Genelleştirilmiş Pareto dağılımı (GPA), 4 istasyon için Wakeby dağılımını (WAK) uygun bulmuşlardır. Heterojenlik ölçüsüne göre 14 istasyon kesinlikle heterojen çıktığından dolayı istasyon sayısını azaltarak 3 değişik bölge elde etmişler ve heterojenlik testini bu bölgelere uygulamışlardır. 8 istasyonlu HR bölgesi homojen çıkmış, 9 istasyonlu PHER bölgesi muhtemelen heterojen çıkmış, 14 istasyonlu HER bölgesi kesinlikle heterojen çıkmıştır. Her üç bölge içinde yaptıkları Z testi sonucu, GLO dağılımının istasyon değerlerine uyduğunu tespit etmişlerdir. Bölgesel boyutsuz büyüme eğrilerini her üç bölge içinde tanımlamışlar ve Monte Carlo simülasyonu ile göreceli hata ve ortalama karekök hatalarını tablolar halinde sunmuslardır.

Yıldız (2006), çalışmasında Genel Ekstrem Değerler (GEV), 3-parametreli Gama (G3), ve 3-parametreli Log-Normal (LN3) dağılımlarının her biri ile, 0.5, 1, 2, 3, 4, 5 değerlerinde altı farklı çarpıklık katsayıları ile ayrı ayrı birçok bir-milyon elemanlı sentetik seriler türetmiş, Pexi = (i - a) / (n - b) biçimindeki noktalama pozisyonu formülündeki (NPF) *a* ve *b* parametrelerinin her birinin değerleri 0.1 artımlarla 0'dan 1'e kadar değiştirmiş, ve böylece 121 farklı *a* ve *b* değerleri ortaya çıkarmıştır. En dar ortalama mutlak rölatif farklar dağılımını veren analizler sonucu: olasılık-ağırlıklı momentler yönteminde kullanılmak üzere, anılan NPF nin en optimum parametre kombinezonları, GEV dağılımı için *a* = 0.7 ve *b* = 1 ve G3 dağılımı için *a* = 0.7 ve *b* = 0 olarak bulmuştur. LN3 dağılımı için *a* parametresi tutarlı olarak *a* = 1 iken *b* parametresinin, çarpıklık katsayısı 0'dan 5'e artarken *b*= 1'den *b* = 0'a azaldığını görmüştür.

Anlı ve ark. (2007), çalışmalarında Göksu havzasının taşkın frekans analizini L-momentler yöntemini kullanarak yapmışlardır. Homojen olarak belirlenen 10 istasyonun yıllık maksimum akımlarına Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal dağılım, Pearson Tip 3, Genelleştirilmiş Pareto dağılımlarını uygulamış, en uygun dağılımın Genelleştirilmiş Ekstrem Değer dağılımı olduğunu belirlemişlerdir.

3. MATERYAL VE METOD

3.1. Materyal

Türkiye'nin toplam yüzölçümü 780 000 km² (78 milyon ha) dır. Türkiye'de dağlarda bulunan küçük göllerle birlikte 120'den fazla doğal göl bulunmaktadır. Doğal göllere ilaveten Türkiye'de 544 adeti DSİ'ce inşa edilerek işletmeye alınmış ve 11 adet diğer kuruluşlarca yapılmış toplam 555 baraj gölü bulunmaktadır. Baraj ve doğal göller çıkarıldığında kalan alan 769 600 km² dir. Türkiye'nin ortalama yükseltisi 1132 m'dir. Doğuda yükselti 4000 m'lere, düzlüklerin rakımı ise 2000 m'lere kadar çıkmaktadır. Türkiye'de yarı kurak iklim özellikleri görülür. Buna karşın Türkiye'nin coğrafik konumundan ve jeomorfolojik yapısından dolayı iklim özellikleri kısa mesafelerde hızla değişmektedir. Sıcaklık, yağış ve rüzgârlar iklim özelliklerine bağlı olarak farklılıklar gösterir. Kuzey ile güney arasındaki altı derecelik enlem farkı da sıcaklık değişiminde önemli bir rol oynamaktadır. Bu yüzden güney bölgeleri, subtropikal iklime benzer Akdeniz ikliminin etkisi altındadır. Akdeniz ikliminde yazlar kurak ve çok sıcak, kışlar yağışlı ve ılık geçer. Kuzeyde ise her mevsim yağışlı olan Karadeniz iklimi görülür. İç bölgeler step iklimi karakterindedir. Yere inen yağış, yerin yüzey yapısına bağlı olarak kısmen yüzey akışına ve kanal akışına geçerek dereleri, ırmakları oluşturur. Her ırmağın su topladığı bir havzası vardır. Türkiye 26 adet hidrolojik havzaya bölünmüştür. Belirlenen 26 havza, 15 adedi nehir havzası, 7 adedi değisik debili genellikle daha küçük akarsulardan oluşan müteferrik havza, 4 adedi ise, denize boşalımı olmayan kapalı havzalardan meydana gelir (Gürer, 2007). (Ek 1)

Bu çalışmada, materyal olarak Elektrik İşleri Etüd İdaresinin (EİEİ) ve Devlet Su İşlerinin (DSİ) yıllara göre çıkarmış olduğu akım rasat yıllıklarındaki tüm Türkiye'de bulunan 26 havzadaki 455 istasyona ait su yılı maksimum akım değerleri kullanılmıştır (DSİ, 1994).

12

3.2. Metod

Taşkın frekans analizlerinde genelde iki tür seri kullanılır. Bunlar:

- 1. Yıllık taşkın serileri
- 2. Kısmi süre serileri

Yıllık taşkınlar, bir su yılında bir defa oluşan maksimum akıştır. Her bir yılda bir maksimum taşkının kullanılması, yıllık taşkınların analizinde esas alınır. Diğer yılların herhangi bir akışı başka bir yılın maksimum akışından büyük olsa dahi dikkate alınmaz. Kısmi süre serileri ise daha pik değerlerle analiz yapabilmek için her yılın maksimum değeri yerine belli bir değerden daha büyük değerlerle oluşturulan serilerdir. Bu çalışmada yıllık taşkın serileri kullanılmıştır.

Taşkınların büyüklükleri, frekansları ve zamanla değişimleri söz konusu olduğu zaman en çok kullanılan yöntemler:

- 1. Birim hidrograf yöntemi, ve
- 2. Taşkın frekans analizidir.

Taşkın frekans analizi ise iki farklı yöntem ile yapılabilir:

- 1. Noktasal taşkın frekansı
- 2. Bölgesel taşkın frekansı

3.2.1. Bölgesel Taşkın Frekans Analizi

Bir havzadaki tüm istasyonlar aynı iklim koşullarına ve coğrafik özelliklere sahip olmadıkları için taşkın frekans dağılımının aynı seçilmesi doğru değildir. Frekans analizinin doğru ve hassas sonuçlar verebilmesi için eldeki hidrolojik verilerin yeterince uzun olması gerekir. İstasyon bazında eldeki veriler genellikle yeterli değildir. Aynı zamanda mevcut hidrolojik veri, söz konusu istasyonun etrafındaki benzer istasyonlar tarafından da ölçülmüş olduğundan, elimizde o veriye ilişkin aynı istatistik özellikleri taşıması muhtemel birçok veri kümesi bulunur. İlgili istasyonlardaki verilerin de incelenmesi ile daha doğru sonuçlara ulaşılacağı beklentisi yeni bir analiz tekniği olan Bölgesel Frekans Analizi'ni meydana getirmiştir. Bölgesel frekans analizinde önemli olan bir diğer özellik de bir bölge olarak kabul edilen istasyonların coğrafik olarak bitişik veya yakın olmaları gibi bir gerekliliğin sözkonusu olmamasıdır (Şorman ve Okur , 2000). Bu çalışmada bölgesel taşkın frekans analizi kullanılmıştır. Bölgesel analiz için benzer istatistik özelliklere sahip istasyonlar ele alınmak koşulu ile bölge, homojen alt bölgelere ayrılır. Böylece taşkın tahminlerinde homojen her bölge için genel bir taşkın frekans dağılımı elde edilmiş olur.

Bir bölgesel frekans analiz yöntemi olan gösterge sel yöntemi bölge olarak kabul edilen istasyonlardaki frekans dağılımlarının o istasyona ait olan belirli bir ölçek faktörü dışında aynı olması prensibidir. Daha önce de değindiğimiz gibi, bölge olarak kabul edilen istasyonlara ait olan homojen havzaların, coğrafik olarak bitişik olmaları gerekmez. Çünkü coğrafik yakınlık istasyonlardaki frekans dağılımının aynı olmasını gerektirmez. Bu durum bölgesel frekans analizi için büyük avantajlar sağlar ve istasyonlar coğrafi yakınlık söz konusu olmaksızın bir bölge olarak kabul edilebilirler. Bu durumun bir diğer avantajı da istasyonlar arasındaki korelasyonu azaltmasıdır.

3.2.1.1. Gösterge Sel Metodu (Index Flood Method)

Gösterge-sel metodu, hidrolojide ve taşkın frekans analizinde uzun bir geçmişe sahip basit bir bölgeselleştirme tekniğidir (Dalrymple, 1960). Gösterge-sel metodu istasyonların homojen bölgelere ayrılmasını temel alır, yani istasyonların bir ölçek faktörü olan gösterge taşkını dışında frekans dağılımlarının aynı olduğunu kabul eder.

 $Q_i(F)=\mu_i q(F)$, denklemde F aşılmama olasılığını, μ_i i istasyonundaki ortalamayı (indeks taşkını), ve q(F) de her istasyon için aynı olan bölgesel büyüme faktörünü temsil eder. Bölgesel frekans analizi neticesinde q(F) değerini elde ettikten sonra bu değeri istenilen istasyonun ortalaması ile çarparak F tekerrürü için ait olduğu istasyondaki hidrolojik değişkenin Q_i(F) değeri elde edilir. N tane istasyonun bulunduğu bir bölgede i istasyonun n_i tane verisi olduğu ve bu verilerin Q_{ij}, j=1,2,.....n_i şeklinde sembolize edildiği kabul edilirse; q(F)= Q_{ij}/ μ_i şeklinde
tanımlanan boyutsuz verilere uydurulan ortak bölgesel dağılımın fonksiyonunun tekerrür fonksiyonu (quantile function) olarak karşımıza çıkar.

Gösterge sel metodu ile yapılan bölgesel frekans analizi aşağıdaki aşamaları içerir. Bu aşamaların hepsinde L-momentler ve L-moment oranları kullanıldığından gösterge sel metodunun bu haline bölgesel L-moment algoritması denilmektedir (Hosking, ve Wallis ,1997).

1. Verilerin gözden geçirilmesi

İstatistik analizlerde, ilk önce eldeki verilerin analiz için uygun olup olmadığı kontrol edilmelidir. Uyumsuzluk ölçüsü, verilerin gözden geçirilmesi ve homojen bölge olarak kabul edilen istasyonların birbirleri ile olan uyumlarının saptanması amacı ile kullanılır. Uyumsuzluk ölçüsü bölgedeki istasyon sayısına bağlıdır. Uyumsuz çıkan bir istasyon başka bölgeye kaydırılmalı veya analizden çıkarılmalıdır. Uyumsuzluk ölçüsü, istasyon verilerinin L-moment oranları ile hesaplanır. İstasyonun L-moment oranları (L-cv, L-çarpıklık, L-basıklık) bir noktanın üç boyutlu koordinatları olarak tanımlanır. Bu tanımlanan noktaların L-cv ve L-çarpıklık değerleri grafikte karşılıklı olarak noktalandığında bir grup oluşturur ve bu grup bir merkeze yani orta noktaya sahiptir. Uyumsuz olarak adlandırılan herhangi bir nokta, bu merkezden oldukça uzaktır. Bu uzaklık kriteri, örnek L-moment oranlarının arasındaki korelasyon olarak tanımlanır. Şekil 3.1. de (+) ile işaretlenmiş olan noktalar kümesinin merkezi, L-cv ve L-çarpıklık değerlerinin grup ortalamasıdır.

Veriler için en uygun seçilen küçük ve büyük eksenli aynı merkeze sahip olan elipsler, istasyonların L-moment oranlarının örnek koveryans matrisleri ile hesaplanır. Uyumsuz noktalar, en dış elipsin de dışında yer alır. N adet istasyon olan bir grupta L-moment oranlarının vektörel formu aşağıdaki gibi ifade edilir.

*L-çarpıklık, t*³ Şekil 3.1. Uyumsuzluk için tanım grafiği (Kaynak: Hosking ve Wallis, 1997)

$$\mathbf{u}_{i} = \left[\mathbf{t}^{i}, \mathbf{t}_{3}^{i}, \mathbf{t}_{4}^{i}\right]^{\mathrm{T}}$$
(3.1)

T: Vektör yada matrisin transpozu

$$\overline{\mathbf{u}} = \mathbf{N}^{-1} \sum_{i=1}^{N} \mathbf{u}_{i}$$
(3.2)

u: Ağırlıksız grup ortalaması

$$A = \sum_{i=1}^{N} \left(u_i - \overline{u} \right) \left(u_i - \overline{u} \right)^{T}$$
(3.3)

A: Karelerinin toplamının matrisi ve çapraz çarpımı

$$D_{i} = \frac{1}{3} N \left(u_{i} - \overline{u} \right)^{T} A^{-1} \left(u_{i} - \overline{u} \right)$$
(3.4)

Di: i istasyonu için uyumsuzluk ölçüsü

 D_i , bölgedeki istasyon sayısına bağlı olarak tanımlanır. Eğer hesaplanan D_i değeri Çizelge 3.1 de verilen kritik D_i değerinden büyük ise o istasyon uyumsuzdur denir.

\mathcal{G}_{1}							
Bölgedeki istasyon		Bölgedeki istasyon					
sayısı	Kritik değer	sayısı	Kritik değer				
5	1.333	11	2.632				
6	1.648	12	2.757				
7	1.917	13	2.869				
8	2.140	14	2.971				
9	2.329	≥15	3.000				
10	2.491						

Cizelge 3.1. Diskordant istatistiği (D_i) icin kritik değerler

(Kaynak:Hosking and Wallis, 1997)

2. Homojen Bölgelerin Belirlenmesi

Bölgesel frekans analizi birçok aşama içerir. Homojen bölgelerin tanımlanması en zor ve öznel yargının en fazla olduğu aşamadır. Bölgesel frekans analizinde tüm bölgeye tek bir frekans dağılımı uygulanır. Bunun uygulanabilmesi için bölgenin homojen olması, her istasyona özgü ölçek faktörünün dışında bölgeye aynı frekans dağılımının uygulanabilmesi anlamına gelen homojenlik koşulunun sağlanması gerekir. Bundan dolayı istasyonlar homojenlik durumunu sağlamak için alt gruplara ayrılır. Bölgesel frekans analizinde benzer istasyonları gruplandırmada birçok yöntem vardır. Bu yöntemler aşağıdaki gibi sınıflandırılabilir.

- 1. Coğrafik Uygunluk
- 2. Öznel Ayırma
- 3. Nesnel Ayırma
- 4. Grup Analizi
- 5. Diğer çeşitli analiz yöntemleri

Bu yöntemler içinde Grup analizi en eski ve en yaygın kullanılan yöntemdir. Grup analizi, bölgesel frekans analizinde istasyonları gruplara ayırmada başarıyla kullanılan istatistik bir yöntemdir. Herbir istasyon, veri vektörlerine göre gruplandırılır. Veri vektörleri, noktasal istatistikleri, istasyon karakteristiklerini veya ikisini birden içerebilir. Bölgesel homojenlik testinde, θ , L-Cv veya L-Cv, L-çarpıklık, L-basıklık kombinasyonunu temsil eder. $\theta^{(i)}$, i istasyonundaki verilere dayanan noktasal tahmindir. $\theta^{(R)}$ ise bölgedeki tüm istasyonları kullanarak hesaplanan bölgesel tahmindir. Buradan S istatistiği aşağıdaki gibi hesaplanır.

$$S = \sum_{i=1}^{N} \left(\theta^{(i)} - \theta^{(R)} \right)^{2}$$
(3.5)

Bu elde edilen S değeri etkisiz dağılım(null distribution) ile karşılaştırılır. Bu dağılımın 4 parametreli kappa dağılımı olduğu farzedilir.(Hosking ve Wallis, 1997)

Hosking ve Wallis (1993), bölgesel homojenliği test etmek için iki istatistik vermiştir. İlk istatistik olan uyumsuzluk ölçüsünden daha önce bahsedildi. İkinci istatistik olan heterojenlik ölçüsünün amacı, istasyon gruplarının heterojenlik ölçüsünü belirlemektir. Heterojenlik ölçüsü özellikle homojen olması muhtemel bölgelerin istasyonları arasında örnek L-momentlerin varyasyonlarını karşılaştırır. Homojen bir bölgede bulunan tüm istasyonlar, aynı toplum L-moment oranlarına sahiptir.

Heterojenlik ölçüsü 3 ayrı değerle belirlenebilir. (V1, V2, V3)

1. $LC_v(t)'$ ye bağlı, t'nin ağırlıklı standart sapması

$$V_{1} = \frac{\sum_{i=1}^{N} N_{i} (t^{i} - t^{R})^{2}}{\sum_{i=1}^{N} N_{i}}$$
(3.6)

N : istasyon sayısı

 N_i : Her istasyonun kayıt uzunluğu t^R : t_i 'nin ortalama değeri

$$t^{R} = \frac{\sum_{i=1}^{N} N_{i} t^{i}}{\sum_{i=1}^{N} N_{i}}$$
(3.7)

2. LC_v - LC_s 'ye dayanan, grupta bulunan istasyonların t ve t₃'lerinin grubun ağırlıklı ortalamasına uzaklığı,

$$V_{2} = \frac{\sum_{i=1}^{N} N_{i} \left\{ \left(t^{i} - t^{R} \right)^{2} + \left(t^{i}_{3} - t^{R}_{3} \right)^{2} \right\}^{\frac{1}{2}}}{\sum_{i=1}^{N} N_{i}}$$
(3.8)

 L-çarpıklık ve L-basıklık' a dayanan, grupta bulunan istasyonların t₃ ve t₄'lerinin grubun ağırlıklı ortalamasına uzaklığı,

$$V_{3} = \frac{\sum_{i=1}^{N} N_{i} \left\{ \left(t_{3}^{i} - t_{3}^{R} \right)^{2} + \left(t_{4}^{i} - t_{4}^{R} \right)^{2} \right\}^{\frac{1}{2}}}{\sum_{i=1}^{N} N_{i}}$$
(3.9)

Heterojenlik ölçüsünü hesaplamak için, L-momentlerin grup ortalamasına (1, t^R , t_3^R , t_4^R) kappa dağılımı uygulanır. Bölgenin en büyük numaralı similasyonu (N_{sim}), bu kappa dağılımından elde edilir. Bölgeler homojen olarak kabul edilir ve veriler çapraz korelasyona veya dizili korelasyona sahip değildirler. İstasyonların kayıt uzunlukları değiştirilmeden, aynen kullanılırlar. Her bir simüle edilmiş bölge için, V_i (V₁, V₂, V₃ olarak tanımlanmış üç ölçüden herhangi biri) hesaplanır. Simüle edilmiş verilerin μ_v (ortalaması), ve σ_v (standart sapması) hesaplanır. Heterojenlik ölçüsü (3.10) nolu formül ile elde edilir.

$$H_{i} = \frac{(V_{i} - \mu_{v})}{\sigma_{v}}$$
(3.10)

Hosking ve Wallis (1993), eğer Hi<1 ise bölgenin kabul edilebilir derecede homojen olduğunu, 1≤Hi<2 ise bölgenin muhtemelen heterojen olduğunu, Hi≥2 ise bölgenin kesinlikle heterojen olduğunu söylemişlerdir. Eğer bölge yeterince homojen değil ise, bölge daha alt bölgelere ayrılarak homojen hale getirilmeye çalışılır.

Hosking ve Wallis (1993), H_2 ve H_3 'ü V_2 ve V_3 'e dayanarak, H_1 'i de V_1 'e dayanarak hesaplamışlardır. H_1 'in homojen ve heterojen bölgelerin ayrımında daha güçlü olduğunu öne sürmüşlerdir. Bundan dolayı V_1 'e dayalı H_1 istatistiği, heterojenlik ölçüsünü hesaplamada tavsiye edilmektedir.

3. Bölgesel Frekans Dağılımının Seçimi

Bölgesel frekans analizinde bölgeye tek bir frekans dağılımı uygulanacağından her istasyona aynı dağılımı uygulamak çoğu zaman imkansızdır. Bu nedenle amaç, her istasyon için doğru tahminler verecek dağılımı bulmaktır. Önemli olan husus noktasal ile bölgesel frekans dağılımının aynı olmadığı durumlar içinde doğru tahminler yapabilecek dağılımlar kullanmaktır.

4. Bölgesel Frekans Uygunluk Testi

Uyumsuz olmayan istasyonlardan oluşan homojen bir bölgede bir dağılım seçildikten sonra, bu dağılımın bölgeye uygun olup olmadığı kontrol edilmelidir. Bu nedenle birçok yöntem geliştirilmiştir. Bunlar Ki kare, Kolmogorov-Smirnov, diğer genel uygunluk testleri ve L-moment istatistiklerine ve momentlere dayalı testlerdir. Literatürde yaygın olarak L-momentlerin basıklık katsayısını temel alan dağılımın uygunluğu ölçüsü kullanılmaktadır. Bu ölçü şu şekilde hesaplanır: Üç parametreli Gev dağılımının uygun olduğunu varsayalım. Gev dağılımı ile elde edilen L-basıklık (t_4^{GEV}) ile bölgesel ortalama L-basıklık (t_4^R) arasındaki fark hesaplanır. $(t_4^R)'$ lerin standart sapmalarını σ_4 ile ifade edersek, σ_4 'ler Gev dağılımının uygun olduğu homojen bölgenin simülasyonu ile elde edilir. İstasyonların kayıt uzunlukları gözlenmiş veriler ile aynı alınır. Gev dağılımının Z testi aşağıdaki gibi hesaplanır.

$$Z_{\text{GEV}} = \frac{\left(t_4^{\text{R}} - t_4^{\text{GEV}}\right)}{\sigma_4} \tag{3.11}$$

Örnek L-momentler t₃ ve t₄ tam olarak hatasız alınır. Bu t₃ için çok iyi bir yaklaşımdır ama kayıt uzunluğu kısa (n_i<20) veya populasyonun L-basıklığı geniş ise (t₃≥0.4) t₄ için iyi bir yaklaşım değildir. Bu problemin üstesinden gelmek için, t₄ için hata düzeltmesi kullanılır($t_4^R - B_4$). B4, gözlenmiş veriler gibi aynı kayıt uzunluğuna ve avni istasyon sayısına sahip bölgelerin bölgesel ortalama L-basıklıklarındaki hatadır. Bölge N istasyona sahip olsun, i'nci istasyonun kayıt uzunluğu n_i ve örnek L-momentler oranları t^i, t^i_3, t^i_4 ile, bölgesel ortalama L-Cv, L-çarpıklık, L-basıklık $t^{R}, t^{R}_{3}, t^{R}_{4}$ ile gösterilir ve ağırlıklı bölgesel ortalamaları 1 nolu denklem ile hesaplanır. Gözlenmiş verilere uygun olması muhtemel 3 parametreli dağılımlar Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Pareto, Genelleştirilmiş Normal ve Pearson Tip 3 literatürde yaygın olarak kullanılmaktadır. Bu dağılımlar için bölgesel L-moment oranları $(1, t^R, t^R_3)$ hesaplanır. Uygulanan dağılımın L-basıklığı t₄^{Dist} olarak adlandırılır. Bölgesel L-moment oranlarına Kappa dağılımı uygulanır ve simülasyon yapılır. Simüle edilmiş bölgeler homojendir ve çapraz korelasyona ve sıralı korelasyona sahip değildirler. İstasyonlar gözlenmiş veriler ile aynı kayıt uzunluğuna sahiptir. Kappa dağılımını uygulamada ve bölgenin simülasyonunda heterojenlik ölçüsünde kullanılan hesaplamalar kullanılır. M'inci simüle edilmiş bölge için L-çarpıklık (t_3^m) ve L-basıklık (t_4^m) hesaplanır. t_4^R 'nin hatası, aşağıdaki formül ile elde edilir.

$$B_4 = N_{sim}^{-1} \sum_{m=1}^{N_{sim}} \left(t_4^m - t_4^R \right)$$
(3.12)

t₄^R 'nin standart sapması;

$$\sigma_4 = \left[\left(N_{sim} - 1 \right)^{-1} \left\{ \sum_{m=1}^{N_{sim}} \left(t_4^m - t_4^R \right)^2 - N_{sim} B_4^2 \right\} \right]^{\frac{1}{2}}$$
(3.13)

ve her bir dağılım için uygunluk testi ölçüsü;

$$\mathsf{Z}^{\mathsf{Dist}} = \frac{\left(\mathsf{t}_{4}^{\mathsf{Dist}} - \mathsf{t}_{4}^{\mathsf{R}} + \mathsf{B}_{4}\right)}{\sigma_{4}} \tag{3.14}$$

Simülasyon kullanılarak her dağılım için ayrı ayrı hesaplanan dağılımın uygunluğu ölçüsünün mutlak değeri 1.645 den küçük ise (|Z| < 1.645), o dağılım bölgesel frekans dağılımı olmaya adaydır. Bu değer %90 güvenilirlik sınırına karşılık gelir.

5. Bölgesel Frekans Dağılımının Parametrelerinin Tahmini

Homojen bölgelerdeki verilere dağılım uydurmak için birçok yöntem vardır. Frekans dağılımının tahmininde yaygın olarak kullanılan 3 yöntemi şöyle sıralayabiliriz. Bunlar; istasyon-yıl yöntemi, maksimum olabilirlik tahmini ve gösterge sel metodudur. Bir bölgeselleştirme tekniği olan gösterge sel metoduna, istasyon verilerinin L-moment oranları kullanıldığında ortaya çıkan yönteme bölgesel L-moment algoritması adı verildiği daha öncede belirtilmişti. Bir bölgede N istasyon olduğunu varsayalım. Kayıt uzunluğu n_i olan bir istasyonun gözlenmiş verileri Q_{ij} (j=1, 2,....,n_i) olsun.Qi(F), 0<F<1, i'nci istasyondaki frekans dağılımının büyüme fonksiyonudur. $\mu_{i=}\overline{Q}_i$ (index flood:örneğin ortalaması), istasyonun ölçek faktörüne bağlıdır. Gözlenmiş veriler μ_i değerine bölünerek boyutsuz değerleri elde edilir. ($q_{ij} = \frac{Q_{ij}}{\mu_i}$ j=1, 2,.....n_i, i=1, 2,.....N). Herbir istasyon için boyutsuz

değerler kullanılarak L-moment oranları hesaplanır. Tüm bölgeye tek bir dağılım fonksiyonu uydurabilmek amacı ile istasyon L-moment oranları, istasyondaki gözlem uzunluklarına göre ağırlıklı ortalama hesaplanarak bölgesel ağırlıklı L-moment oranları bulunur. Bu momentler kullanılarak bölgesel dağılımın fonksiyonunun parametreleri hesaplanır. Bu dağılım kullanılarak istasyon bazında ve bölge bazında boyutsuz büyüme oranları bulunur. Bölge içindeki her istasyonun ortalaması, ilgili dönüş aralığına karşılık gelen büyüme oranı ile çarpılarak, o istasyonun o dönüş aralığına karşılık gelen tekerrür değerleri hesaplanır. Yapılan bu tahminlerin doğruluk derecelerinin bulunabilmesi için Monte Carlo Simülasyonu kullanılır. Her istasyon için; göreceli ortalama hata değerleri, göreceli hata değerleri ve %5-%95 alt ve üst güvenilirlik bant sınırları elde edilir. Bölge bazında bu değerlere ilave olarak, ortalama hata değerleride hesaplanır.

Bölgesel taşkın frekans analizinde gösterge sel metodu veya L-moment algoritması yönteminde izlenecek yol aşağıdaki adımları içermektedir.

- Homojen bölgeler tespit edildikten sonra Q_T/Q_{ort} oranına karşılık T değerleri aşağıdaki sıra ile hesaplanır(Şorman, 2004).
 - $\ddot{\mathbf{u}}$ Tüm istasyonlar için Q_T/Q_{ort} hesaplanır ve bölgesel ortalamaları alınır. Bölgesel boyutsuz momentler hesaplanır.
 - ü Boyutsuz momentlere ait değişim katsayılarının ve çarpıklık katsayılarının bölgesel ortalamaları hesaplanır.
 - $\ddot{\mathbf{u}}$ Dağılım fonksiyonları eldeki boyutsuz Q_T/Q_{ort} değerlerine uygulanır.
 - ü Homojen havzalarda bulunan herbir istasyon için aynı olan q(F) değerleri bölgesel gelişme eğrisi olarak adlandırılır ve Qi değerleri, Qi=µiq(F) formülünden µi=Qiort.ve q(F) değerleri kullanılarak hesaplanır.
- 2. Q_{ort} değerleri bölgesel olarak havza özellikleri kullanılarak (alan, eğim, morfoloji) regresyon analizleri ile $X_T=Q_T/Q$ oranından Q_T hesaplanır.

3.2.2. Parametre Tahmin Yöntemleri

İstatistikte en önemli problemlerden biri, olasılık dağılımının parametrelerinin tahminidir. Olasılık dağılım şekli hakkındaki varsayımlar karar vermek için önemli

bir ölçüttür. Olasılık yoğunluk fonksiyonunun seçimi, örnek verilerden sağlanan bilgiler ile objektif ve subjektif yöntemler ile olmaktadır. Subjektif yöntemler, örnek verilerin grafiklenerek histogramlarının ve birikimli fonksiyonlarının elde edilmesi şeklindedir. Objektif yöntemler ise, uygunluk testlerinin yapılması ve karar verilmesidir.

Bir rastgele değişkenin toplum parametreleri tam olarak hesap edilemeyeceğinden eldeki örnekten tahmin yoluna gidilir. Tahminlerde iyi bir yöntem yani hatasız tahmin yapabilen bir yöntem kullanılırsa toplum parametrelerine yakın değerler elde edilir. Hatasız tahminler içinden örnekten örneğe en az değişenine, yani örnekleme varyansı en küçük olanına etkin tahmin denir. Başlıca tahmin yöntemleri şu şekilde sıralanır:

3.2.2.1. Maksimum Olabilirlik Yöntemi

Gözlenmiş serinin gerçekleşmesi durumunda olabilirliği en yüksek seri değerleri elde edilmiş olur. Gözlenmiş her bir değerin olasılık yoğunluk fonksiyonu yazılır ve hepsi birbiri ile çarpılırsa bu işlemin sonucu bu serinin olabilme ihtimalini verir. Serinin olabilme fonksiyonunu maksimum yapan parametre değerleri bu dağılımda örnek seriye en uygun parametreler olacaktır. Olabilme fonksiyonunun maksimumları ile logaritması alınmış olabilme fonksiyonun maksimumları aynı değerlerden meydana gelmektedir. O halde; çarpımın türevini almak yerine aşağıda verilen toplamlar fonksiyonu olan Log(o.f.)'nun türevini almak daha uygun olur.

$$Log(o.y.f.) = \sum_{i=1}^{N} f(x_i, a, b, c,)$$
(3.15)

Eşitliğin her bir parametreye göre türevi alınır ve sıfıra eşitlenir. Yani parametre adedi kadar denklem elde edilmiş olur. Sistemdeki denklemlerin hepsini sıfır yapan parametre değerleri maksimum olabilirlik yöntemine göre tahminler olur.

3.2.2.2. Momentler Yöntemi

Bir rastgele değişkenin olasılık yoğunluk fonksiyonu eğrisi ile absis ekseni arasında kalan alan bir kütle gibi düşünülürse bu kütlenin çeşitli noktalara göre momentleri analitik olarak alınıp; parametreler, bu analitik ifadelerin, momentlerin eldeki örnekten hesaplanan nümerik hatasız tahminlerine eşitlenmesi ile elde edilen formüller yardımıyla bulunur.

 $\alpha = f_1(\mu_1, \mu_2, \mu_3, \dots, \beta) , \quad \beta = f_2(\mu_1, \mu_2, \mu_3, \dots, \beta)$ if a delerinden α , β parametrelerinin $\overline{\alpha}$, $\overline{\beta}$ tahminleri elde edilir.

3.2.2.3. Olasılık Ağırlıklı Momentler Yöntemi (PWM)

Birçok araştırmacılar (Dedun ve Jing, 1988; Jing ve ark., 1989; Hosking ve ark., 1985; Ladwehr ve ark., 1979a, b, c; Phien, 1987; Raynal ve Salas, 1986; Wallis ve Wood, 1985) tarafından da incelenmiş olan olasılık ağırlıklı momentler yöntemi (PWM), ilk olarak Greenwood ve ark (1979), tarafından Wakeby dağılımının parametre tahmini için geliştirilmiş, daha sonra Hosking (1986) tarafından kuramsal açıdan incelenmiş ve bu momentlerin merkezsel istatistik momentlerle eşdeğer özelliklere sahip olduğu gösterilmiştir. Bu momentlerin örnek tahminleri özellikle kısa kayıtlar için hatasız ve aykırı değerlere "outleirs" a karşı hassas değillerdir. Ayrıca verinin lineer fonksiyonu olmaları nedeniyle diğer momentlere göre örnekleme değişimlerinden daha az etkilenmektedirler. Bu özellikleri klasik yöntemlerin yanında önemli bir avantaj olmaktadır.

Pratikte ve araştırmalarda, yaygın olarak kullanılmaktadır. Bu yöntemde temel ilke, toplumun sıfırıncı, birinci ve ikinci olasılık ağırlıklı momentlerini alarak, bunların örnek serinin tahmin edilen sıfırıncı, birinci ve ikinci momentlerine eşitlenip 3 adet formül elde ederek, 3 adet bilinmeyen parametrenin bu formüllerin çözülmesi ile bulunmasıdır. Şayet parametre sayısı 3 ten fazla ise parametre sayısı kadar formül elde edene kadar diğer üst mertebedeki olasılık ağırlıklı momentler de alınır. Bu momentler, $F=F(x)p(X \le x)$ ve l, j, k tam sayılar olmak üzere, x=x(F) şeklinde ters

25

formu açık olarak belirlenebilen dağılımların parametrelerinin belirlenmesinde kullanılabilmektedir.

Greenwood ve ark. (1979) tarafından olasılık ağırlıklı momentler

$$M_{1,j,k} = E[X^{i}F^{j}(1-F)^{k}]$$
(3.16)

veya

$$M_{1,j,k} = \int_{0}^{1} x(F)^{i} (I - F)^{k} dF$$
(3.17)

şeklinde tanımlanmışlardır. İfadelerde $F=F(x)=P(X \le x)$ ve 1, j, k pozitif tamsayılardır. j=k=0 ve 1 pozitif tamsayı ise $M_{1,0,0}$ momenti 1 inci mertebeden merkezsel istatistik momente eşit olmaktadır.

 $M_{1,j,0}$ ve $M_{1,0,k}$ momentlerinin hatasız örnek tahminleri (Hosking, 1986; Landwehr ve ark. 1979a) aşağıda verilmiştir (Gebeyehu, 1989).

$$M_{1,j,0} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\binom{i-1}{j}}{\binom{N-1}{j}} \right] x(i)$$
(3.18)

$$M_{1,0,k} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\binom{i-1}{j}}{\binom{N-1}{j}} \right] x(i)$$
(3.19)

j=0,1,....,N-1 ; k=0,1,...,N-1 ve x(i), i=1,2,...,N düzenlenmiş örnek olmak üzere j=1 örnekteki en küçük değeri göstermektedir.

Olasılık ağırlıklı momentlerin örnek tahmini için bir başka yolda rastgele değişkenin i'inci değere eşit veya küçük kalma frekansının aşağıdaki ifade ile hesabına dayanır. Yapılan pratik çalışmalar şayet dağılım veriye iyi uyuyorsa bu yöntemin daha başarılı olduğunu göstermiştir.

$$F(i) = \frac{i - 0.35}{N}$$
(3.20)

Landwehr ve ark (1979b), Hosking ve ark (1985) ve Ahmad ve ark (1988) önermiş oldukları (3.20) nolu denklemde görülen noktalama pozisyonu formülünün kullanılması ile (3.18), (3.19) denklemleri

$$\hat{M}_{1,j,0} = \frac{1}{N} \sum_{i=1}^{N} x(i) F(i)^{j}$$
(3.21)

$$\hat{\mathbf{M}}_{1,0,k} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}(i) [1 - \mathbf{F}(i)]^k$$
(3.22)

şekillerini alırlar. Bu denklemlerin herbiri bir olasılık fonksiyonunu tanımlamaya yeterli olup herbiri cinsinden yazılabilirler.

$$\alpha_{k} = M_{1,0,k} = \sum_{j=0}^{k} {\binom{k}{j}} (-1)^{j} M_{1,j,0}$$
(3.23)

$$\beta_{j} = M_{1,j,0} = \sum_{j=0}^{k} {\binom{k}{j}} -1)^{j} M_{1,0,k}$$
(3.24)

Genelde (3.23) denkleminden $\hat{M}_{1,0,k}$ tahmin edilir ve $\hat{M}_{1,j,0}$ değerlerine (3.24) ifadesinden geçilir. İlk üç momentin birbiri cinsinden ifadeleri:

$$M_{100} = M_{100}$$

$$M_{110} = M_{100} - M_{101}$$

$$M_{120} = M_{100} - 2M_{101} + M_{102}$$

$$M_{130} = M_{100} - 3M_{101} + 3M_{102} - M_{103}$$
(3.25)

Olasılık ağırlıklı momentler bir dağılımı belirleyebildikleri halde kendi başlarına diğer momentler gibi bir anlam taşımamaktadırlar. Bu nedenle olasılık dağılımlarının biçimlerinin belirlenmesinde Hosking (1986) tarafından elde edilen Lmomentleri kullanılmaktadır(Gebeyehu, 1989). Bilinen momentlere benzer olup olasılık ağırlıklı momentler cinsinden ifade edilebilirler.

3.2.2.4. L-Momentler Yöntemi

L-Momentler, Hosking (1986, 1990) tarafından geliştirilmiştir. L-momentler yöntemi parametre tahmini, bölgeselleştirme ve dağılım tanımlama ile ilgili çeşitli problemleri çözmede yaygın olarak kullanılmaktadır. L-momentler yöntemi PWM yöntemlerinin lineer bir fonksiyonudur. Adınıda buradan alır. L-momentler bilinen momentlere benzer olup PWM momentleri cinsinden aşağıdaki gibi yazılabilirler (Gebeyehu, 1989).

$$L_{r+1} = (-1)^{r} \sum_{k=0}^{r} (-1)^{r-k} {r \choose k} {r+k \choose k} M_{1,0,k}$$
(3.26)

L momentleri;

$$r=0 \implies \lambda_{1}=L_{1}=M_{100}$$

$$r=1 \implies \lambda_{2}=L_{2}=M_{100}-2M_{101}=2M_{110}-M_{100}$$

$$r=2 \implies \lambda_{3}=L_{3}=M_{100}-6M_{101}+6M_{102}=6M120-6M_{110}+M_{100}$$

$$r=3 \implies \lambda_{4}=L_{4}=M_{100}-12M_{101}+30M_{102}-20M_{103}=20M_{130}-30M_{120}+12M_{110}-M_{100}$$

Yüksek mertebeden momentlerde ölçümler birbirinden bağımsızlaştırılırsa Lmoment oranları aşağıdaki gibi olur:

r=3,4,....
$$t_r = \frac{L_r}{L_2}$$
 $t = \frac{L_2}{L_1}$ (3.28)

L-momentler (L₁) ve (L₂), L-moment oranları L-Cv(t), çarpıklık katsayısı (t₃), basıklık (kurtosis) katsayısı (t₄), olasılık dağılımını özetlemek için en çok kullanılan parametrelerdir. L₁ dağılımı yer parametresini, L₂ dağılımı ölçek parametresini temsil etmektedir.

Bu metodun uygulanması için aşağıda sıralanan hususlar aranır(Şorman, 2004):

- Frekans analizi hatasız ve güçlü olmalıdır. Bunun anlamı: Bir modelleme yönteminin güçlü olabilmesi için yöntemin gerçek fiziksel sürecin modelin kabullerinden farklılaşma göstermesi durumunda dahi tahmin edilen değerin (Q_T) gerçekten randımanı iyi ve oldukça hatasız olmasıdır. Aksi halde Q_T nin bulunmasındaki yöntem ile zayıf tahmin yapılıyorsa bunun güçlü olmayacağı anlaşılmalıdır.
- 2. Frekans analiz yöntemi simülasyona dayandırılmalıdır.
- 3. Bölgeselleştirmenin önemli ölçüde bu tür çalışmada katkısı vardır.
- 4. Bölgelerin coğrafik baza dayandırılma zorunluluğu yoktur.
- 5. L-moment istatistik parametreleri dağılımın geniş bir alanını kapsar ve hatalı olma özelliği azdır.

Klasik parametre tahmin yöntemleri ile karşılaştırıldığında L-momentler yönteminin avantajları şunlardır (Şorman ve Okur, 2000):

- L-mometler yöntemi ile bulunan varyasyon, çarpıklık ve basıklık katsayıları hemen hemen hatasızdır ve yaklaşık normal bir dağılıma sahiptir. Aynı çarpım momentleri küçük örneklemlerde oldukça değişken ve hatalıdır.
- 2. L-momentler, çarpım momentlerinden daha hatasız oldukları için moment diyagramları oluşturulmasında kullanımları daha uygundur.
- L-momentler, dağılım ortalamasının bulunabildiği her durumda hesaplanır. Bu özellik, bazı çarpım momentlerinin hesaplanmadığı durumlar için de geçerlidir.
- Çarpım momentlerinde bir sınırlama yoktur. L-moment oranları –1 ile 1 arasında değiştiğinden doğal bir sınıra sahiptir. Bu sınırlama, bu değerlerin yorumlanmasını kolaylaştırır.

- Çarpım momentlerinde cebirsel sınırlamalar vardır. n örneklemin uzunluğu, g çarpıklık katsayısı ve k basıklık katsayısı olmak üzere; g ≤ n^{1/2} ve k ≤ n+3 olmalıdır. Oysa L-momentlerde örnekleme bağlı bu türlü sınırlamalar yoktur. Popülasyon değerlerinin alabileceği tüm değerleri örneklem L-momentleri de alabilir.
- 6. L-momentlerin aksine çarpım momentleri dağılımın uçlarına daha fazla ağırlık verirler ve uçlardaki gözlemlerden daha fazla etkilenirler.
- Klasik tekniklerle kıyaslandığında, L-momentler daha fazla sayıda dağılımın parametrelerinin bulunmasında kullanılabilir.
- 8. L-momentler bir örneklemeden tahmin edildiğinde, örneklemde bulunan uç değerlere karşı daha doğru ve etkin sonuçlar verir.
- 9. L-momentler kullanılarak elde edilen dağılım parametreleri küçük örneklemlerde genellikle daha doğru sonuçlar verir.
- 10. L-momentler, verilerin doğrusal fonksiyonları oldukları için örneklemin değişkenliğinin etkisi fazla değildir(Hosking, 1990).
- 11. L-momentler bölgeselleştirme tekniklerinde kolaylıkla kullanılır. Lmomentler tekniği ilgili istasyonlardan bölgesel parametrelerin elde edilmesi için en üstün tekniktir(WMO, 1989).
- 12. L-momentleri temel alan analizler, model varsayımlarından sapmalar olduğunda ve/veya uygun dağılım fonksiyonunun seçilmediği durumlarda daha etkin sonuçlar vermektedir.

3.2.3. Dağılımların Parametrelerinin L-momentler Yöntemi ile Tahmini

3.2.3.1. Genelleştirilmiş Ekstrem Değer Dağılımı (GEV)

GEV dağılımının parametreleri aşağıdaki formüller kullanılarak elde edilir (Hosking 1986, 1990).

$$k = 7.8590C + 2.9554C^2 \tag{3.29}$$

$$\alpha = \frac{L_2 k}{\left(1 - 2^{-k}\right) \Gamma(1 + k)} \tag{3.30}$$

$$\zeta = L_1 - \frac{\alpha}{k} [1 - \Gamma(1 + k)] \tag{3.31}$$

$$C = \frac{2}{3 + \tau_3} - \frac{\log 2}{\log 3}$$
(3.32)

Burada ζ yer, α ölçek, k şekil parametresidir. Parametreler bu formüller yardımı ile elde edildikten sonra (3.33) nolu denklem yardımı ile istenilen aşılmama olasılığına karşılık boyutsuz verilere uydurulan ortak bölgesel dağılımın fonksiyonunun tekerrür fonksiyonu (quantile function) elde edilir.

$$q_{\rm T} = \frac{Q}{Q} = \zeta + \left(\frac{\alpha}{k}\right) \left[1 - \left(-\ln F\right)^k\right]$$
(3.33)

3.2.3.2. Genelleştirilmiş Lojistik Dağılım (GLO)

Genelleştirilmiş Lojistik dağılımının parametreleri aşağıdaki formüller yardımı ile elde edilir(Hosking 1986, 1990).

$$\mathbf{k} = -\tau_3 \tag{3.34}$$

$$\alpha = \frac{L_2}{\Gamma(1+k)\Gamma(1-k)}$$
(3.35)

$$\zeta = L_1 + \frac{(L_2 - \alpha)}{k} \tag{3.36}$$

Genelleştirilmiş Lojistik dağılımının ters formu analitik olarak aşağıdaki formül ile ifade edilir. Bu formül yardımı ile aşılmama olasılığına karşılık gelebilecek boyutsuz debi belirlenebilir.

$$q_{\rm T} = \frac{Q}{\overline{Q}} = \zeta + \left(\frac{\alpha}{k} \left[1 - \left\{ \frac{(1-F)}{F} \right\}^k \right]$$
(3.37)

3.2.3.3. Genelleştirilmiş Normal Dağılım (GNO)

Genelleştirilmiş Normal dağılımda (Log-Normal dağılım) rastgele değişken sadece pozitif değerler alabildiği ve dağılımın pozitif çarpıklığı olduğu için bu dağılım pratikte karşılaşılan birçok değişkene iyi uyar. İnşaat mühendisliğinde hidrolojik değişkenlerle ilgili problemlerde geniş ölçüde kullanılır (Bayazıt, 1994).

Genelleştirilmiş Normal dağılımının kullanımı basittir. Bunun yanında dağılımın bir özelliği de Log-Normal dağılmış değişkenlerin çarpımı ile elde edilen değişkenlerinde Log-Normal dağılmış olmasıdır. Log-Normal dağılımının parametrelerinin L-momentler ile ilişkileri ve L-çarpıklık katsayısı Hosking (1990) tarafından aşağıdaki şekilde verilmiştir.

$$L_1 = \zeta + \exp(\alpha + \frac{k^2}{2})$$
 (3.38)

$$L_2 = \exp(\alpha + \frac{k^2}{2})\operatorname{erf}(\frac{k}{2})$$
 (3.39)

$$t_{3} = \frac{6}{\sqrt{\pi}} \int_{0}^{k/2} \frac{\text{erf}(x/\sqrt{3}) e^{-x^{2}}}{\text{erf}(k/2)}$$
(3.40)

$$z = \sqrt{8/3} \Phi^{-1} \left(\frac{1 + \tau_3}{2} \right)$$
(3.41)

$$k = 0.999281z - 0.006118z^3 + 0.000127z^5$$
(3.42)

$$\alpha = \text{Log}\left[\frac{L_2}{\text{erf}\left(\frac{k}{2}\right)}\right] - \frac{k^2}{2}$$
(3.43)

$$\zeta = L_1 - \exp\left(\mu + \frac{k^2}{2}\right) \tag{3.44}$$

Yukarıdaki denklemlerde erf error fonksiyonunu göstermektedir ve

$$\operatorname{erf}(x) = 2\Phi(x\sqrt{2}) - 1$$
 (3.45)

eşitliği ile hesaplanır. Φ^{-1} , standart normal dağılımın tersini gösterir. Boyutsuz verilere uydurulan ortak bölgesel dağılım fonksiyonunun tekerrür fonksiyonu aşağıdaki formül ile hesaplanır.

$$q_{T} = \exp[k\Phi^{-1}(F) + \alpha] + \zeta$$
(3.46)

3.2.3.4. Pearson Tip 3 Dağılımı (PE3)

Pratikte çok kullanılan dağılımlardan birisi olan Pearson Tip 3 dağılımının fonksiyonunda γ şekil, σ ölçek, μ yer parametresidir(Hosking ve Wallis, 1997). Eğer $\gamma \neq 0$ ise $\alpha = 4/\gamma^2$, $\beta = 0.5\sigma |\gamma|$ ve $\xi = \mu - 2\sigma/\gamma$.

Eğer $\gamma > 0$, x in aralığı, $\xi \le x < \infty$ ve olasılık yoğunluk fonksiyonu aşağıdaki gibidir.

$$f(x) = \frac{(x-\xi)^{\alpha-1}e^{-\frac{(x-\xi)}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}$$
(3.47)

$$\lambda_1 = \xi + \alpha \beta \tag{3.48}$$

$$\lambda_2 = \pi^{-1/2} \beta \Gamma \left(\alpha + \frac{1}{2} \right) / \Gamma(\alpha)$$
(3.49)

$$t_3 \ge 1/3$$
 için $\tau = 1-t_3$ ve

$$\alpha = \frac{\left(0.36067t - 0.59567t^2 + 0.25361t^3\right)}{\left(1 - 2.78861t + 2.56096t^2 - 0.77045t^3\right)}$$
(3.50)

$$t_3 < 1/3$$
 ise $t = 3\pi (t_3)^2$

$$\alpha = \frac{(1+0.2906t)}{(t+0.1882t^2+0.0442t^3)}$$
(3.51)

$$\gamma = 2\alpha^{-1/2} \operatorname{sign}(\mathbf{t}_3) = \lambda_1 - \sigma \alpha \tag{3.52}$$

$$\sigma = \lambda_2 \pi^{1/2} \alpha^{1/2} \Gamma(\alpha) / \Gamma\left(\alpha + \frac{1}{2}\right)$$
(3.53)

$$\mu = \lambda_1 \tag{3.54}$$

 K_T frekans faktörüne bağlı tekerrür fonksiyonu aşağıdaki formül ile elde edilir.

$$q_{\rm T} = \sigma\beta + \gamma + K_{\rm T}\sqrt{\sigma^2\beta} \tag{3.55}$$

3.2.3.5. Genelleştirilmiş Pareto Dağılımı (GPA)

Genelleştirilmiş Pareto dağılımının olasılık yoğunluk fonksiyonu aşağıdaki gibi tanımlanabilir(Hosking ve Wallis, 1997).

$$f(x) = \alpha^{-1} e^{-(1-k)y} \qquad y = \begin{cases} -k^{-1} \log\{1 - k(x - \xi)/\alpha\}, & k \neq 0\\ (x - \xi)/\alpha, & k = 0 \end{cases}$$
(3.56)

$$F(x) = 1 - e^{-y}$$
(3.57)

Genelleştirilmiş Pareto dağılımının olasılık yoğunluk fonksiyonunun ters formu analitik olarak aşağıdaki formül yardımı ile tanımlanır.

$$x(F) = \begin{cases} \zeta + \alpha \{ 1 - (1 - F)^k \} / k, & k \neq 0 \\ \zeta - \alpha \log(1 - F), & k = 0 \end{cases}$$
(3.58)

Buradaki ζ yer, α ölçek ve k şekil parametresini temsil etmektedir.

L-momentler yöntemi ile aşağıdaki formüller kullanılarak yer, ölçek ve şekil parametreleri hesaplanabilir.

$$\zeta = \lambda_1 - (2 + k)\lambda_2 \tag{3.59}$$

$$\alpha = (1+k)(2+k)\lambda_2 \tag{3.60}$$

$$k = (1 - 3t_3)/(1 + t_3)$$
(3.61)

3.2.3.6. 5 Parametreli Wakeby Dağılımı (WAK)

Bölgesel taşkın frekans analizi için Houghton (1978) tarafından Wakeby dağılımı önerilmiştir. Bu dağılım 5 parametreli olup m=0 kabul edildiği takdirde 4 parametreli olarak işlem yapılır. Wakeby dağılımının olasılık yoğunluk fonksiyonu ve eklenik dağılım fonksiyonu açık olarak verilememektedir. Landwehr ve ark (1979a) tarafından ters formu şu şekilde verilmiştir:

$$\mathbf{x}(\mathbf{F}) = \zeta + \frac{\alpha}{\beta} \left[\mathbf{1} - (\mathbf{1} - \mathbf{F})^{\beta} \right] - \frac{\gamma}{\delta} \left[\mathbf{1} - (\mathbf{1} - \mathbf{F})^{-\delta} \right]$$
(3.62)

Burada ζ (yer parametresi), α , β , γ ve δ dağılımın parametreleridir. F değeri ise T dönüş aralığına bağlı aşılmama olasılığıdır. Wakeby dağılımının parametre tahmini maksimum olabilirlik yöntemi ile çok fazla iterasyon gerektirmektedir. Momentler yöntemi ile de, dağılımın parametreleri momentlerin bir fonksiyonu olarak ifade edilemediğinden iteratif çözümler gerektirmektedir. Bu nedenle Landwehr ve ark (1979b, c) tarafından önerilen, olasılık ağırlıklı momentler yöntemiyle çözümü mümkündür.

Olasılık ağırlıklı momentler ile çözümde, ilk önce momentler hesaplanır.

1.
$$N_1$$
, N_2 , N_3 hesabi:
 $N_1 = 64\hat{M}_3 - 81\hat{M}_2 + 24\hat{M}_1 - \hat{M}_0$
 $N_2 = 16\hat{M}_3 - 27\hat{M}_2 + 12\hat{M}_1 - \hat{M}_0$ (3.63)
 $N_3 = 4\hat{M}_3 - 9\hat{M}_2 + 6\hat{M}_1 - \hat{M}_0$

2.
$$C_1, C_2, C_3$$
 hesabi:
 $C_1 = 125\hat{M}_4 - 192\hat{M}_3 + 81\hat{M}_2 - 8\hat{M}_1$
 $C_2 = 25\hat{M}_4 - 48\hat{M}_3 + 27\hat{M}_2 - 4\hat{M}_1$ (3.64)
 $C_3 = 5\hat{M}_4 - 12\hat{M}_3 + 9\hat{M}_2 - 2\hat{M}_1$

$$\hat{\mathbf{b}} = \frac{(N_3C_1 - N_1C_3) \pm \left[(N_1C_3 - N_3C_1)^2 - 4(N_1C_2 - N_2C_1)(N_2C_3 - N_3C_2) \right]^{\frac{1}{2}}}{2(N_2C_3 - N_3C_2)}$$
(3.65)

$$\beta = \max(b_1, b_2) \tag{3.66}$$

$$\delta = -\min(b_1, b_2) \tag{3.67}$$

3. d parametresinin tahmini:

$$\hat{\mathbf{d}} = \frac{\left(\mathbf{N}_1 + \hat{\mathbf{b}}\mathbf{N}_2\right)}{\left(\mathbf{N}_2 + \hat{\mathbf{b}}\mathbf{N}_3\right)} \tag{3.68}$$

4. Diğer hesaplar:

$$\{0\} = (1 + \hat{b})(1 - \hat{d})\hat{M}_{0}$$

$$\{1\} = 2(2 + \hat{b})(2 - \hat{d})\hat{M}_{1}$$

$$\{2\} = 3(3 + \hat{b})(3 - \hat{d})\hat{M}_{2}$$

$$\{3\} = 4(4 + \hat{b})(4 - \hat{d})\hat{M}_{3}$$
(3.69)

5. m, a, c ve a_0 parametrelerinin tahmini:

$$m = \frac{\left[\{3\} - \{2\} - \{1\} + \{0\}\right]}{4} \tag{3.70}$$

$$\hat{a} = \frac{(\hat{b}+1)(\hat{b}+2)}{\hat{b}(\hat{b}+\hat{d})} \left[\frac{\{1\}}{2+\hat{b}} - \frac{\{0\}}{1+\hat{b}} - \hat{m} \right]$$
(3.71)

$$\hat{c} = \frac{(1-\hat{d})(2-\hat{d})}{\hat{d}(\hat{b}+\hat{d})} \left[\frac{-\{1\}}{2+\hat{d}} - \frac{\{0\}}{1+\hat{d}} - \hat{m} \right]$$
(3.72)

$$a_0 = m + a - c + \frac{a}{1+b} + \frac{c}{1-d}$$
(3.73)

Yukarıdaki 5 adımda parametreler hesaplandıktan sonra ζ , α , ve γ parametreleri aşağıdaki formüller yardımı ile elde edilir.

$$\gamma = (1 - \delta)(2 - \delta)(3 - \delta)\frac{(4N_2 - N_1) + (4N_3 - N_2)\beta}{6(\beta + \delta)}$$
(3.74)

$$\alpha = -(1+\beta)(2+\beta)(3+\beta)\frac{(4N_2 - N_1) - (4N_3 - N_2)\delta}{6(\beta+\delta)}$$
(3.75)

$$\zeta = a_0 - \frac{\alpha}{(1+\beta)} - \frac{\gamma}{(1-\delta)}$$
(3.76)

3.2.4. Tahmin Edilen Değerlerin Doğruluğunun Belirlenmesi

İstatistiksel analizlerle elde edilen sonuçlar doğal olarak kesin değildir. Kesin olmayan bu sonuçların maksimum kullanışlı olmaları için, eldeki verilere uygun olmaları gerekir. Bu, geleneksel istatistik analizlerle elde edilen parametreler ve tekerrür değerleri için güven aralığının hesaplanması ile başarılabilir. Bölgesel Lmoment algoritması kullanılarak yapılan bölgesel frekans analizinde, homojen bölgeler tahmin edilirken de güven aralığı benzer şekilde hesaplanır.

Benzer sonuçlar, bölgesel frekans analizinin diğer metotları için elde edilebilir, ama hesaplanan değerlerin doğruluğu, her bir metodun tahminleri, birbirini sağladığı zaman farklı metotlar ile yapılan tahminlerin kararlılığını yansıtır.

Böyle güven aralıkları pratikteki faydaları ile sınırlıdır. Çünkü bölgesel Lmoment algoritmasında gösterge sel metodunun temelini oluşturan tahminlerin hepsinin verileri sağladığından nadiren emin olunabilir. Gerçekte, tahminlerin tamamını tam olarak sağlamasada L-moment algoritması kullanışlıdır. Bölgenin heterojenlik olasılığını, frekans dağılımının tanımlanamaması ve farklı

38

istasyonlardaki gözlemler arası istatistiksel bağımlılığı hesaba kattığından dolayı Lmoment algoritması ile elde edilen tahminlerin kesinliği gerçekçi bir kanıdır. Hesaplanan tekerrür tahminlerinin doğruluğunun kabul edilebilir düzeyde olup olmadığı Monte Carlo simülasyonu ile hesaplanır. Güven aralığının belirlenmesinde iki parametre vardır. Bunlar hatalar karelerinin ortalamasının karekökü ve hatadır. Her istasyon için, göreceli hatalar karelerinin ortalamasının karekökü (RMSE), göreceli hata değerleri (Relatif Bias) ve %5-%95 alt ve üst güvenilirlik bant sınırları elde edilir. Bölge bazında bu değerlere ek olarak, ortalama hata değerleri de hesaplanır.

 $\hat{\omega}$, ω 'nın tekerrür tahmini olsun, $\hat{\omega}$ olasılık dağılımına sahip rastgele değişkendir. $\hat{\omega}$ 'nın uygunluğu $\hat{\omega}$ 'nın ω 'ya ne kadar yakın bir değer olduğuna bağlıdır. $\hat{\omega}$ 'nın ω 'dan sapması hata (bias) ve değişkenlik ((variability), hataya sahip olmayan gerçek değerlerden tahmin edilenlerin rastgele sapması) olarak iki bileşenle tanımlanır. Değişkenlik, örnekleme bağlı tekerrür tahminlerinde oluşan sapmanın gösterimidir. Hata (bias) ve ortalama karekök hataları (RMSE) tahminlerin performansını ölçmede yaygın olarak kullanılır.

Bias($\hat{\omega}$)=E($\hat{\omega}$ - ω)

RMSE($\hat{\omega}$)={E($\hat{\omega}$ - ω)²}^{1/2}

Eğer hata (bias) sıfıra eşit ise, yani $\hat{\omega}$ 'nın beklenen değeri ω 'ya eşit ise tahminler hatasızdır.

RMSE aşağıdaki gibi de tanımlanabilir.

RMSE($\hat{\omega}$)=[{Bias($\hat{\omega}$)}² + Var($\hat{\omega}$)]^{1/2}

Hata (Bias) : Beklenen değerlerle populasyonun değerleri arasındaki fark

Var : Tahmin edilen değerlerin yayılımıdır.

Denklemdende anlaşıldığı gibi RMSE, $\hat{\omega}$ 'nın değişkenliği ve hatası ile ilgilidir. Hem hata hemde hatalar karelerinin ortalamasının karekökü aynı ölçüm birimine sahiptir. Tek fark tahmin edilen değer ile gerçek değer arasındaki farkın mutlak değeri alınır. Simülasyon programındaki tahmin edilen tekerrürlerin doğruluğu bu parametrelerin modifiye edilmiş haliyle hesaplanır. Göreceli hata , relatif hatalar karelerinin ortalamasının karekökü ve bölgesel ortalama mutlak göreceli hata olarak adlandırılır. Bu parametrelerle ilgili formüller Hosking ve Wallis (1997) bölüm 7'de (7.10-7.14) verilmiştir. Amaç simüle edilmiş ve gözlenmiş tahminlerin ve bu değerlerin yüzde olarak tekerrür tahminlerinin doğruluklarını karşılaştırmaktır. Göreceli hata ve hatalar karelerinin ortalamasının karekökü Hosking tarafından IBM araştırma merkezinde hazırlanan xsim programı ile de hesaplanır (Hosking, 2000(versiyon 3.03)). Tekerrür tahminlerinin parametrelerinin doğruluğu göreceli hata, göreceli hatalar karelerinin ortalamasının karekökü ve bölgesel mutlak göreceli hata olarak xsim simülasyon programının çıktılarında verilir.

3.2.5. Monte Carlo Simülasyonu

Monte Carlo simülasyonu tekerrür tahminlerinin doğruluğunu değerlendirmek için kullanılır. Monte Carlo metodu, olasılık teorisi üzerine kurulu bir sistemdir. Monte Carlo metodunda istatistiksel ve matematiksel tekniklerle bir deneyi veya çözülmesi gereken bir fiziksel olayı tesadüfi sayıları defalarca kullanarak simüle edip çözmek esastır. Simüle edilmiş bölgenin toplum L-moment oranlarındaki istasyonlar arası varyasyon, gerçek verilerin örneklem L-moment oranlarınınkinden daima küçük olmalı. Çünkü örneklem değişkenliği, örnek Lmoment oranlarının uygun populasyon L-moment oranlarından daha geniş bir alana yayılmasına sebep olur. Bu sebepten dolayı L-cv değerleri simülasyon programının girdi dosyasında modifiye edilerek kullanılır. İstasyonların L-cv değerlerinin aralığı, bölgesel ağırlıklı ortalama değerleri sabit tutularak ikiye bölünür. Değerler küçükten büyüğe sıralanır ve ortadaki değer bölgesel ağırlıklı ortalama değeri olarak kabul edilir ve yukarı doğru bu değer maksimum değerle minimum değer arasındaki fark kadar azaltılır. Böylece yeni L-cv değerleri elde edilir. Bu değerler xsim programında kullanılır (Hosking and Wallis, 1997).

3.2.5.1. Bölgesel L-moment Algoritmasının Simülasyonu için Algoritma

1. N: istasyon sayısı, n_i: N adet istasyonun herbirine ait kayıt uzunluğu ve bu istasyonların frekans dağılımlarının L-momentleri açıkça belirtilir.

2. Verilen L-moment oranları ile her istasyonun frekans dağılımının parametreleri hesaplanır.

3. Simülasyon prosedüründe herbir tekrarlanma aşamasında;

3.1. Herbir istasyon için örnek veriler türetilir. Eğer istasyonlar arası bağımlılık yoksa, herbir istasyon için frekans dağılımından n_i boyutunda rastgele örnekler türetilir. Eğer istasyonlar arası bağımlılık simülasyona katılıyorsa aşağıdaki prosedür takip edilir.

3.1.1. n_0 : max n_i (kayıt uzunluğu en fazla olan istasyon) olsun. Her defasında k=1,.... n_0 , için y_{ik}, i=1,....N elemanlı ortalama sıfır vektörü ve R kovaryans matrisli çok değişkenli normal dağılıma y_k rastgele vektörü türetilir.

3.1.2. Herbir y_{ik} için $k=1,\ldots,n_i$, $i=1,\ldots,N$ gerekli sınır dağılımları dönüşümü yapılır.

3.2. Bölgesel L-moment algoritması bölgesel verilerin örneklemine uygulanır. Bu işlem aşağıdaki adımları içerir.

3.2.1. Herbir istasyonun L-moment oranları ve bölgesel L-moment oranları hesaplanır.

3.2.2. Uygun dağılım seçilir.

3.3.3. Bölgesel büyüme eğrisi ve istasyonların tekerrür değerleri hesaplanır.

3.3. Hesaplanan bölgesel büyüme eğrisi ve istasyonların tekerrür değerlerinin göreceli hataları hesaplanır.

4. Bölgesel büyüme eğrisi ve hesaplanan tekerrür değerlerinin doğruluğu hesaplanır (Hosking ve Wallis, 1997).

Simülasyon programı bu çalışmada, seçilen dağılımlar arasında Z testine göre en küçük Z değerine sahip dağılıma uygulandı. Genelde, uygunluk testine göre $Z^{dist} \le 1.64$ eşitliğini sağlayan tüm dağılımlara uygulanabilir.

41

3.2.6. Bilgisayar Programı

Daha önceki bölümlerde anlatılan tüm bu işlemleri yapan bilgisayar alt programları Amerika'da IBM araştırma merkezinde Hosking ve ekibi tarafından geliştirilmiştir. Bu çalışmada alt programlar xtest ve xsim programları olarak iki ana program şeklinde modifiye edilmiştir. Program aşağıdaki basamakları içermektedir.

1. Frekans analizinde kullanılacak dağılımların parametrelerinin hesaplanması (PELXXX).

2. Frekans analizi için belirli bir dönüş aralığına karşılık gelen tekerrür değerlerinin bulunması (QUAXXX).

3. Frekans analizi için belirli bir tekerrür değerine karşılık gelen dönüş aralığının hesaplanması (CDFXXX).

4. Her istasyon için uyumsuzluk ölçüsünün(Di) hesaplanması (REGTST).

5. Heterojenlik ölçüsünün (H) hesaplanması (REGTST).

6. Bölge frekans dağılımı olmaya aday beş dağılım için dağılımın uygunluğu ölçüsünün (Z) hesaplanması (REGTST).

7. L-moment algoritması kullanılarak bölgeye bir dağılım uygulanması (REGTST).

8. Hata değerinin bulunması amacıyla bölgenin simülasyonu (XSIM).

Program iki kısımdan oluşmaktadır. Yukarıdaki ilk yedi madde xtest programının basamaklarını içerirken son madde xsim programına aittir.

Xtest programının girdi dosyasında aşağıdaki değerler yer alır. Örnek veri ve çıktı dosyası Ek-3 te verilmiştir.

İstasyon sayısı (N) İstasyon No Kayıt uzunluğu (ni) Ortalama t t₃ t₄ t₅ Debi

L-moment oranları hesaplanırken Hosking ve Wallis'in önermiş olduğu noktalama pozisyonu formülü kullanılır. Bölgesel analiz yapılırken Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal, Pearson Tip 3 ve Genelleştirilmiş Pareto dağılımları kullanılır. Program bu beş dağılım içinde uygunluk testi ölçüsünü (Z) hesaplamaktadır. Bölgesel tekerrür değerlerini sadece Z≤1.64 değerini sağlayan dağılımlar ve Wakeby dağılımı için hesaplar. Wakeby dağılımı teste tabi tutulmadan çalışmaya eklenmiştir. Çünkü Wakeby dağılımı 5 parametreye sahip olduğundan diğer dağılımlardan daha çok ve daha geniş dağılım biçimlerine sahiptir. Bu sebepler, veri analizleri yöntemlerinin dağılım biçimlerindeki değişimler altında, güçlü çalışmalarda kullanılan türetilmiş yapay veriler için Wakeby dağılımını özellikle kullanışlı yapar. Bu nedenlerden dolayı Wakeby dağılımının heterojen bölgelerde de kullanılması tercih edilir (Hosking ve Wallis, 1997).

Çalışmanın ikinci kısmı olan Xsim programının veri dosyası Ek-3 te verilmiştir.

4. BULGULAR VE TARTIŞMA

Elektrik İşleri Etüd İdaresinin (EİEİ) ve Devlet Su İşlerinin (DSİ) yıllara göre çıkarmış olduğu akım rasat yıllıklarındaki tüm Türkiye'de bulunan 26 havzadaki 455 istasyona ait su yılı maksimum akım değerlerine bölgesel frekans analizi uygulanmıştır. Çalışmaya 10 yıl ve daha fazla kayıt uzunluğuna sahip olan istasyonlar alınmıştır. Daha kısa kayıtlı olan istasyonlar çalışmaya taraflı netice vereceği düşünülerek alınmamıştır. Kullanılan istasyonlarla birlikte her bölgenin haritası Ek-2'de verilmiştir.

Analizler iki aşamada gerçekleştirilmiştir. Birinci aşamada her bir bölgeyi tek bir bölge kabul edip heterojenlik ölçüsü ve istasyonların uyumsuzluk ölçüsü hesaplanmış, heterojen çıkan bölgeler daha alt bölgelere ayrılmıştır. Bölge homojenlik ölçüsünü sağladığında o bölgeye ait frekans dağılımını seçmek için Z testi yapılmıştır. Z testinde başarılı olan dağılımlar bölgeye uygulanmış ve büyüme eğrileri elde edilmiştir. İkinci aşamada, uygun dağılımlarla elde edilen tekerrür fonksiyonu değerlerinin doğruluğu simülasyon çalışmaları ile pekiştirilmiştir. Son olarak da her bölge için ortalama debi-Alan veya ortalama birim debi-alan ilişkisi belirlenmiş ve böylece kısa kayıtlı olan veya hiç ölçüm yapılmamış bölgeler içinde taşkın tahminine olanak sağlanmıştır. Xtest ve xsim programları için örnek girdi ve çıktı dosyaları Ek 3 de verilmiştir. Her bölgeye ait ortalama Alan-debi (A-Q_{ort}) veya alan - ortalama birim debi (A -q) ilişkileri belirlenmiş ve grafik olarak verilmiştir. Her havzaya ait sonuçlar ve değerlendirmeler aşağıdaki gibi özetlenebilir.

4.1. Meriç Havzası

Meriç Havzasının bölgesel taşkın frekans analizinde dördü DSİ ye diğer dördü EİEİ ne ait toplam 8 adet istasyon kullanılmıştır. Bu istasyonlara ait bazı bilgiler Çizelge 4.1'de verilmiştir.

çızerge 1.1. menç mavzasına me Dirgirer							
İstasyon No	Gözlem Yapan Kurum	Gözlem Süresi (yıl)	Alan (km²)	Qort. (m ³ /s)			
1-008	DSİ	29	2794	219.79			
1-014	DSİ	22	304.3	121.36			
1-031	DSİ	32	71.3	33.16			
1-039	DSİ	31	86.4	43.98			
101	EİE	30	478.4	90.17			
104	EİE	22	7928.1	195.63			
105	EİE	22	10194.8	716.22			
106	EİE	22	1881.2	197.08			

Çizelge 4.1. Meriç Havzasına Ait Bilgiler

Çizelge 4.1'de verilen istasyonlara ait L-moment oranları materyal yöntemde anlatıldığı gibi excell yardımı ile hesaplandı (Çizelge 4.2).

Çizelge 4.2. Meriç Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

	5		-				
	n (gözlem						
İstasyon No	süresi)	Qort. (m ³ /s)	t	t ₃	t_4	t ₅	Di
1-008	29	219.8	0.4883	0.3474	0.1666	0.0943	0.19
1-014	22	121.4	0.4013	0.3300	0.2000	0.0951	1.62
1-031	32	33.2	0.5599	0.4102	0.2549	0.2012	1.74
1-039	31	44.0	0.4683	0.3476	0.2131	0.1270	0.13
101	30	90.2	0.3768	0.2884	0.2363	0.1673	0.92
104	22	195.6	0.3849	0.2333	0.1567	0.1097	1.65
105	22	716.2	0.5276	0.3557	0.1480	0.1108	0.43
106	22	197.1	0.4990	0.3047	0.0788	0.0289	1.31
Ağırlıklı	bölgesel o	ortalama	0.4656	0.3312	0.1882		

Uyumsuzluk ölçüsü, bölüm 3.2.1.1 de anlatıldığı gibi hesaplandı. Ve değerlerin Çizelge 3.1 deki n=8 istasyon için verilen kritik Di=2.140 değerinden küçük olduğu görüldü. Yani kullanılan istasyonların hepsi bölge bazında birbirleri ile uyumlu çıkmıştır. Çizelge 4.2 de ilk yedi sütundaki değerler kullanılarak xtest programının input dosyası hazırlandı ve xtest programının sonucunda bölgenin heterojenlik ölçüsü aşağıdaki gibi elde edildi.

HETEROJENLİK ÖLÇÜSÜ (SİMÜLASYON SAYISI=500)					
Gözlenen değerlerin Grup LCv lerinin Standart sapması					
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0518				
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0141				
Standartlaştırılmış H(1) değerleri	0.92				
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.0706				
Ortalama LCv/LCs mesafesinin simülasyon ortalaması					
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0231				
Standartlaştırılmış H(2) değerleri	-1.05				
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.0618				
Ortalama LCs/LCk mesafesinin simülasyon ortalaması					
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0283				
Standartlaştırılmış H(3) değerleri	-1.93				

Çizelge 4.3. Meriç Havzasının Heterojenlik Ölçüsü

Xtest programı ile hesaplanan heterojenlik ölçüleri kapa dağılımı yardımı ile simülasyon yapılarak elde edilmiştir. Hesaplanan H değerlerinin tümüne bakıldığında 1.00 değerinden küçük olduğu görülmektedir. Yani üç H değerine göre de bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen bir başka değer ise dağılımların uygunluk ölçüsüdür. Genelleştirilmiş Lojistik (GLO), Genelleştirilmiş Ekstrem Değer (GEV), Genelleştirilmiş Normal (GNO), Pearson Tip 3 (PE3) ve Genelleştirilmiş Pareto (GPA) dağılımları için yapılan uygunluk testi sonuçları Çizelge 4.4 de verilmiştir.

<u> </u>								
GEN. LOJISTIK	L-BASIKLIK= 0.258	Z=1.66						
GEN. EXTREME DEĞER	L-BASIKLIK= 0.234	Z=1.02 *						
GEN. NORMAL	L-BASIKLIK= 0.209	Z=0.34 *						
PEARSON TÌP III	L-BASIKLIK= 0.166	Z=-0.82 *						
GEN. PARETO	L-BASIKLIK= 0.165	Z=-0.84 *						

Çizelge 4.4. Uygunluk Testi Sonuçları

Uygunluk testi sonuçlarına göre Z değerlerinin yanında yıldız olanlar testi geçmiş yani $|Z_{dag}| \le 1.64$ şartını sağlamıştır. Çizelge 4.4. e göre 4 dağılım modeli datalara uymasına rağmen sıfıra en yakın Z değerine sahip Genelleştirilmiş Normal dağılım(GNO) en uygun dağılım modeli olarak belirlenmiştir. Çizelge 4.4 deki Z testi sonucuna göre uygun olan tüm dağılımlar ve ek olarak Wakeby dağılımı için parametre tahminleri hesaplandı ve Çizelge 4.5. de verildi. Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık

dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.6). Gözlenmiş değerler ve Çizelge 4.6. da verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.1).

	ζ (yer	Alfa (ölçek	K (şekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
Gen. Ext. Değer	0.550	0.512	-0.236		
Gen. Normal	0.735	0.674	-0.696		
Gen. Pareto	0.067	0.938	0.005		
	MU	Sigma	Gamma		
	(ortalama)	(St.Sap.)	(Çarpık.)		
Pearson Tip III	1.000	0.930	1.987		
	ζ	Alfa	Beta	Gamma	
Wakeby	0.037	0.520	1.260	0.626	

Çizelge 4.5. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Çizelge 4.6.	Dönüş	periyotlarına	karşılık	boyutsuz	verilere	uydurulan	ortak	bölgesel
	olasılık	a dağılımının t	tekerrür	fonksiyon	u değerle	eri		

y (Gumb									
azal.	T Dön.	Aşılmama							Göz.
Değ.)	Per.	olasılığı	GEV	GNO	PE3	GPA	Wakeby	у	Değer
-0.838	1.1111	0.1	0.163	0.163	0.165	0.165	0.155	-1.226	0.072
-0.476	1.25	0.2	0.32	0.305	0.276	0.276	0.280	-0.735	0.211
0.37	2	0.5	0.746	0.735	0.716	0.716	0.734	-0.239	0.388
1.5	5	0.8	1.472	1.506	1.569	1.570	1.531	0.257	0.640
2.25	10	0.9	2.071	2.129	2.212	2.214	2.140	0.743	1.005
2.97	20	0.95	2.755	2.809	2.855	2.856	2.791	1.215	1.328
4.6	100	0.99	4.809	4.656	4.346	4.338	4.555	1.696	1.653
5.3	200	0.995	5.957	5.584	4.988	4.973	5.447	2.199	2.128
6.91	1000	0.999	9.469	8.089	6.478	6.439	7.902	2.665	2.447
9.21	10000	0.9999	17.491	12.66	8.608	8.516	12.579	3.094	2.786
								4.297	3.934

Şekil 4.1. Meriç Havzasına Ait Taşkın Frekans Eğrileri

Bölgesel frekans dağılımın tek bir dağılım olarak belirleyebilmek için Z testi sonucuna göre en küçük mutlak Z değerine sahip olan dağılım en uygun dağılım seçildi ve bu dağılımın verdiği değerlerin doğruluğunu hesaplayabilmek için ise Monte Carlo yöntemini kullanan xsim programı yardımı ile bölge simüle edilidi. Simüle edilmiş bölge için toplum L-moment oranlarındaki değişkenlik gerçek dataların örnek L-moment oranlarındaki değişkenlikten az olmalı. Bu yüzden, simülasyon çalışması yapılırken orijinal L-moment oranları yerine modifiye edilmiş L-moment oranları kullanıldı. Bu çalışmada, öncelikle orijinal LCv değerleri minimumdan maksimuma sıralandı, orijinal LCv oranları aralığının yarısı alındı ((max.LCV-min.LCv)/2), aralığın orta noktasına ağırlıklı bölgesel ortalama LCv değeri verildi ve küçülen değere doğru bu aralığın değeri kadar azaltıldı, büyüyen değere doğru ise artırılarak yeni LCv serisi elde edildi. L-skewnees(LCs) değeri olarak orijinal serinin bölgesel ağırlıklı ortalama LCs değeri kullanıldı. Rastgele sayı türeticisi kökü programın önerdiği maksimum değer olan 2147483646D0 değeri kullanıldı.

Meriç havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan Genelleştirilmiş Normal dağılımdır. Bu dağılım kullanılarak bölge 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.7 de verilmiştir.

T Dönüş Periyodu (Yıl)	F (Aşılmama Olasılığı)	q(F) (Büyüme Eğrisi)	RMSE (Ort. Hata)	95%	Hata Bantlar 5%	rı Fark
1.111111	0.1	0.163	0.459	0.105	0.314	0.209
1.25	0.2	0.305	0.202	0.243	0.402	0.159
2.0	0.5	0.735	0.076	0.652	0.822	0.17
5.0	0.8	1.506	0.029	1.445	1.55	0.105
10	0.9	2.129	0.045	2.012	2.257	0.245
20	0.95	2.809	0.072	2.554	3.138	0.584
100	0.99	4.656	0.13	3.896	5.82	1.924
200	0.995	5.584	0.153	4.521	7.263	2.742
1000	0.999	8.089	0.202	6.093	11.528	5.435
10000	0.9999	12.66	0.265	8.761	20.257	11.496

Çizelge 4.7. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (Genelleştirilmiş Normal Dağılım)

İstasyonu olamayan noktalarda veya kısa kayıtlara sahip olan istasyonlarda gelebilecek taşkının büyüklüğünü tahmin edebilmek için alan-birim debi ilişkisi belirlendi (Şekil 4.2). Meriç havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.1) nolu formül yardımı ile hesaplanabilir.

$$\frac{Q}{A} = q = 3.256 A^{-0.429} \Rightarrow \overline{Q} = 3.256 A^{0.571}$$
(4.1)

Şekil 4.2. Meriç Havzasın Alan-q(birim debi) ilişkisi

Meriç havzasına GNO dağılımının uyduğunu daha önce belirtmiştik. GNO dağılımının ters fonksiyonu yani x(F) analitik olarak tanımlanamadığından, ortalama debi hesaplandıktan sonra GNO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

4.2. Marmara Havzası

Marmara havzasından toplam 22 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.8 de verilmiştir.

3 0				0
	Gözlem	Gözlem		
İstasyon	Yapan	Süresi	Alan	Qort.
No	Kurum	(yıl)	(km²)	(m ³ /s)
2-004	DSİ	36	395	173.3
2-006	DSİ	21	258	78.43
2-010	DSİ	25	975.8	264.22
2-015	DSİ	22	174.9	104.51
2-016	DSİ	19	118.3	25.16
2-023	DSİ	21	43.7	10.62
2-024	DSİ	19	95.7	28.08
2-028	DSİ	24	287.1	127.52
2-029	DSİ	22	129.4	78.55
2-030	DSİ	24	76.9	33.85
2-031	DSİ	18	219.7	75.28
2-032	DSİ	20	228	107.32
2-034	DSİ	22	109.3	20.48
2-036	DSİ	21	279.4	131.67
2-038	DSİ	19	207	102.89
2-044	DSİ	18	270.6	70.47
2-047	DSİ	21	118.8	62.35
2-052	DSİ	19	56.8	33.97
209	EİEİ	22	267.6	97.4
210	EİEİ	19	1192.8	422.47
211	EİEİ	18	257.6	31.3
212	EİEİ	26	2095.6	545.55

Çizelge 4.8. Marmara Havzasına Ait Bilgiler

Çizelge 4.8'deki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.9 da verilmiştir.
İstasyon	n (dözlem	2					
No	süresi)	Qort. (m ³ /s)	t	t ₃	t_4	t ₅	Di
2-004	36	173.3	0.3648	0.3534	0.1818	0.0674	0.83
2-006	21	78.43	0.3485	0.2304	0.2039	0.1341	1.39
2-010	25	264.22	0.4006	0.3393	0.2052	0.1356	0.02
2-015	22	104.51	0.4478	0.2332	0.1233	0.1157	0.94
2-016	19	25.16	0.5296	0.3528	0.1821	0.1314	1.79
2-023	21	10.62	0.4790	0.3533	0.2224	0.0953	0.80
2-024	19	28.08	0.4476	0.4436	0.3528	0.2929	1.49
2-028	24	127.52	0.3438	0.2671	0.1929	0.0177	0.43
2-029	22	78.55	0.4181	0.2742	0.1202	0.0443	0.34
2-030	24	33.85	0.3956	0.3647	0.1911	0.0783	0.51
2-031	18	75.28	0.3532	0.2662	0.1040	0.0247	0.95
2-032	20	107.32	0.4274	0.2088	0.0603	0.0198	0.95
2-034	22	20.48	0.3873	0.2222	0.1337	0.0511	0.50
2-036	21	131.67	0.4211	0.4001	0.1997	0.0962	0.97
2-038	19	102.89	0.3472	0.5217	0.4435	0.2407	2.97
2-044	18	70.47	0.4463	0.4806	0.3448	0.2320	1.18
2-047	21	62.35	0.3534	0.3959	0.2048	0.0104	1.72
2-052	19	33.97	0.4673	0.3893	0.2311	0.1690	0.55
209	22	97.4	0.3901	0.2085	0.0844	0.0561	0.59
210	19	422.47	0.2981	0.2310	0.1480	0.0277	1.04
211	18	31.3	0.2829	0.2293	0.2062	0.0617	1.80
212	26	545.55	0.3721	0.2965	0.2136	0.1037	0.23
Ağı	rlıklı bölges	el ortalama	0.3952	0.3199	0.1950		

Çizelge 4.9. Marmara Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

İstasyonların uyumsuzluk ölçülerinin, Çizelge 3.1 deki n≥15 istasyon için verilen kritik Di=3.0 değerinden küçük oldukları görüldü. Yani kullanılan istasyonalrın hepsi bölge bazında birbirleri ile uyumlu çıkmıştır. xtest programının sonucunda bölgenin heterojenlik ölçüsü aşağıdaki gibi elde edildi (Çizelge 4.10).

Çizelge 4.10 deki tüm H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.11 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Ekstrem Değer ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Normal dağılım en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4.12 de görülmektedir.

Çizelge 4.10. Marmara Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ (SİMÜLASYON SAYISI=500)				
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0556			
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0564			
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0087			
Standartlaştırılmış H(1) değerleri	-0.09			
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.0926			
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1092			
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0157			
Standartlaştırılmış H(2) değerleri	-1.05			
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.0975			
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1368			
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0195			
Standartlaştırılmış H(3) değerleri	-2.01			

Çizelge 4.11. Uygunluk Testi Sonuçları

3						
GEN. LOJİSTİK	L-BASIKLIK= 0.252	Z = 1.81				
GEN. EXTREME DEĞER	L-BASIKLIK= 0.227	Z = 0.83 *				
GEN. NORMAL	L-BASIKLIK= 0.203	Z = -0.11 *				
PEARSON TIP III	L-BASIKLIK= 0.163	Z = -1.72				
GEN. PARETO	L-BASIKLIK= 0.157	Z = -1.96				

Çizelge 4.12. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	K (şekil parametresi)		
GEN.EXT. DEĞER	0.621	0.444	-0.221		
GEN. NORMAL	0.782	0.58	-0.671		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.004	5.082	19.754	0.717	0.045

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.13). Gözlenmiş değerler ve Çizelge 4.13 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.3).

Marmara havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan Genelleştirilmiş Normal dağılımdır. Bu dağılım kullanılarak bölge 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.14 de verilmiştir. Z testine göre GEV dağılımıda eldeki datalara uygundur. Simülasyon çalışması GEV dağılımı içinde yapılmış ve Çizelge 4.15 den de görüldüğü gibi GEV dağılımına göre yapılan simülasyon çalışmasının sonucunda RMSE değerleri ve Hata bantları arasındaki farklar büyümüştür.

y (Gumbel							
azal.	T Dön.	Aşılmama					Göz.
Değ.)	Per.	olasılığı	GEV	GNO	Wakeby	У	Değer
-0.838	1.111111	0.1	0.283	0.283	0.305	-1.235	0.172
-0.476	1.25	0.2	0.421	0.409	0.419	-0.736	0.322
0.37	2	0.5	0.791	0.782	0.767	-0.235	0.511
1.5	5	0.8	1.411	1.438	1.458	0.245	0.701
2.25	10	0.9	1.915	1.960	2.001	0.722	0.961
2.97	20	0.95	2.484	2.525	2.560	1.219	1.277
4.6	100	0.99	4.162	4.037	3.928	1.722	1.616
5.3	200	0.995	5.084	4.788	4.548	2.152	1.934
6.91	1000	0.999	7.849	6.796	6.063	2.702	2.242
9.21	10000	0.9999	13.970	10.409	8.429	3.887	3.551
						4.147	2.958
						4.628	3.043

Çizelge 4.13. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.3. Marmara Havzasına Ait Taşkın Frekans Eğrileri

Çızelge 4.14. Bolgesel Buyume Egrisinin Dogruluk Ölçuleri (GNO)						
T Dönüş Periyodu (Yıl)	F (Aşılmama Olasılığı)	q(F) (Büyüme Eğrisi)	RMSE (Ort. Hata)	95%	Hata Bantlar 5%	ı Fark
1.111111	0.1	0.283	0.244	0.233	0.329	0.096
1.25	0.2	0.408	0.144	0.357	0.456	0.099
2	0.5	0.782	0.052	0.723	0.822	0.099
5	0.8	1.438	0.029	1.396	1.46	0.064
10	0.9	1.96	0.048	1.882	2.053	0.171
20	0.95	2.525	0.07	2.371	2.744	0.373
100	0.99	4.037	0.114	3.613	4.773	1.16
200	0.995	4.788	0.131	4.21	5.855	1.645
1000	0.999	6.797	0.169	5.742	8.944	3.202
10000	0.9999	10.41	0.218	8.284	15.105	6.821

Çizelge 4.14. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)

Çizelge 4.15. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)

T Dönüş Periyodu (Yıl)	F (Aşılmama Olasılığı)	q(F) (Büyüme Eğrisi)	RMSE (Ort. Hata)	F	lata Bantla	rı
(11)	Oldolligi)			95%	5%	Fark
1.111111	0.1	0.283	0.251	0.230	0.341	0.111
1.25	0.2	0.421	0.140	0.368	0.472	0.104
2	0.5	0.791	0.052	0.730	0.829	0.099
5	0.8	1.411	0.032	1.353	1.437	0.084
10	0.9	1.915	0.046	1.842	1.992	0.150
20	0.95	2.484	0.068	2.333	2.702	0.369
100	0.99	4.162	0.127	3.695	5.103	1.408
200	0.995	5.084	0.155	4.402	6.617	2.215
1000	0.999	7.850	0.226	6.435	11.754	5.319
10000	0.9999	13.973	0.343	10.350	26.117	15.767

Marmara havzası için alan-debi ilişkisi Şekil 4.4 deki gibidir. Marmara havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi 4.2 nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 0.992 \mathbf{A}^{0.83}$$
 (4.2)

Şekil 4.4. Marmara Havzasının Alan-Q(Debi) ilişkisi

Marmara havzası datalarına en iyi uyumu sağlayan GNO dağılımının ters fonksiyonu analitik olarak tanımlanamadığından, ortalama debi hesaplandıktan sonra GNO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

4.3. Susurluk Havzası

Susurluk havzasından toplam 17 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.16 da verilmiştir.

Susurluk havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.17 de verilmiştir. Çizelgeden de anlaşıldığı gibi uyumsuz istasyon bulunmamaktadır.

Çizelge 4.18 deki tüm H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.19 da verilmiştir. Bu sonuçlara göre Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Lojistik ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Ekstrem Değer dağılımı en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4.20 de görülmektedir.

3 0				0
	Gözlem	Gözlem		
Istasyon	Yapan	Süresi	Alan	Qort.
No	Kurum	(yıl)	(km²)	(m³/s)
3-008	DSİ	26	784.5	381.15
3-010	DSİ	22	452.3	33.76
3-013	DSİ	24	470.4	203.96
3-017	DSİ	25	147.4	65.59
3-021	DSİ	24	521.5	275.83
3-024B	DSİ	18	239.3	126.5
3-034	DSİ	21	1253.9	165.47
301	EİE	19	4672	289.82
302	EİE	30	9629.2	759.73
314	EİE	61	2309	620.89
316	EİE	45	6454	833.29
321	EİE	47	1290.8	139.38
328	EİE	20	1125.6	125.02
3-027	DSİ	38	64.3	2.41
311	EİE	19	1621.6	74.32
315	EİE	35	3049.6	68.09
3-018	DSİ	24	59.8	32.49

Çizelge 4.16. Susurluk Havzasına Ait Bilgiler

Çizelge 4.17. Susurluk Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

	2	3					
İstasyon No	n (gözlem süresi)	Qort. (m³/s)	t	t ₃	t ₄	t ₅	Di
3-008	26	381.15	0.2990	0.3811	0.2717	0.2196	1.00
3-010	22	33.76	0.2347	-0.0182	0.1354	0.1138	1.71
3-013	24	203.96	0.3010	0.1419	0.0893	0.0081	0.62
3-017	25	65.59	0.3172	0.1524	0.1665	0.0712	0.38
3-021	24	275.83	0.3032	0.3844	0.3065	0.2336	2.46
3-024B	18	126.5	0.2598	0.2090	0.1177	-0.0006	1.25
3-034	21	165.47	0.2459	-0.0196	0.1543	0.0170	2.07
301	19	289.82	0.2579	0.2140	0.1914	0.0911	1.92
302	30	759.73	0.3665	0.3673	0.1621	0.0485	0.63
314	61	620.89	0.3713	0.3179	0.2287	0.1651	0.80
316	45	833.29	0.3525	0.2218	0.0624	-0.0175	1.10
321	47	139.38	0.3290	0.2762	0.1735	0.0667	1.05
328	20	125.02	0.3521	0.2740	0.1835	0.0759	0.09
3-027	38	2.41	0.2971	0.2521	0.2081	0.1018	0.25
311	19	74.32	0.4386	0.2122	0.0286	-0.0094	0.12
315	35	68.09	0.2861	0.2645	0.2842	0.1306	0.96
3-018	24	32.49	0.3606	0.1715	0.1193	0.0488	0.60
Ağırlıl	klı bölgesel ortal	ama	0.3221	0.2394	0.1755		

WAKEBY

			••
C ¹ 1 1 10	0 11TT	TT / ' 1'1	$O1 \cdots \cdots$
1 170 00 /L LY		11n Untoro10n11	
		ни пессоени	
		In Increi o joinn	1 OIYubu
1			`

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0471
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0413
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0075
Standartlaştırılmış H(1) değerleri	0.76
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.0939
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.0883
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0141
Standartlaştırılmış H(2) değerleri	0.4
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1101
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1086
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0164
Standartlaştırılmış H(3) değerleri	0.09

Çizelge 4.19. Uygunluk Testi Sonuçları

j _ U	,	
GEN. LOJISTIK	L-BASIKLIK= 0.214	Z = 1.60 *
GEN. EKSTREM DEĞER	L-BASIKLIK= 0.181	Z = 0.01 *
GEN. NORMAL	L-BASIKLIK= 0.168	Z = -0.65 *
PEARSON TIP III	L-BASIKLIK= 0.143	Z = -1.84
GEN. PARETO	L-BASIKLIK= 0.101	Z = -3.86

, ,					•
Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	k (şekil parametresi)		
GEN. LOJISTIK	0.877	0.293	-0.239		
GEN. EKST. DEĞER	0.711	0.418	-0.105		
GEN. NORMAL	0.864	0.515	-0.497		
	۲	ALFA	BETA	GAMMA	DELTA

Çizelge 4.20. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.21). Gözlenmiş değerler ve Çizelge 4.21 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.5).

1.907

5.749

0.560

0.013

0.150

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	Wakeby	у	Göz. Değer
-0.838	1.11	0.1	0.377	0.377	0.376	0.360	-1.238	0.259
-0.476	1.25	0.2	0.532	0.517	0.510	0.515	-0.730	0.408
0.37	2	0.5	0.877	0.867	0.864	0.865	-0.238	0.613
1.5	5	0.8	1.358	1.389	1.402	1.393	0.244	0.802
2.25	10	0.9	1.723	1.771	1.787	1.791	0.728	1.022
2.97	20	0.95	2.128	2.167	2.174	2.193	1.226	1.273
4.6	100	0.99	3.326	3.181	3.120	3.141	1.741	1.505
5.3	200	0.995	3.994	3.670	3.554	3.555	2.196	1.743
6.91	1000	0.999	6.040	4.951	4.639	4.532	2.736	2.013
9.21	10000	0.9999	10.738	7.202	6.403	5.965	3.272	2.451
							3.847	2.422
							4.213	2.623
							4.758	2.646
							5.158	4.441

Çizelge 4.21. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.5. Susurluk Havzasına Ait Taşkın Frekans Eğrileri

Susurluk havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan Genelleştirilmiş Ekstrem Değer dağılımdır. Bu dağılım kullanılarak bölge 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.22 de verilmiştir. Z testine göre GNO dağılımı da eldeki datalara uygundur. Simülasyon çalışması GNO dağılımı içinde yapılmış ve Çizelge 4.23 den de görüldüğü gibi GNO dağılımına göre yapılan simülasyon çalışmasının sonucunda bazı RMSE değerleri büyümüş bazıları küçülmüştür. Fakat büyüme eğrisi oranlarına (q(F)) bakıldığında birbirine çok yakın değerler elde edildiği görülmektedir.

T Dönüş Periyodu	F (Aşılmama Olaşılığı)	q(F) (Büyüme Eğrisi)	RMSE (Ort. Hata)	Hata Bantları		1
(11)	Clashigi)			95%	5%	Fark
1.111111	0.1	0.377	0.253	0.331	0.436	0.105
1.25	0.2	0.517	0.139	0.479	0.565	0.086
2	0.5	0.867	0.033	0.832	0.9	0.068
5	0.8	1.389	0.042	1.34	1.402	0.062
10	0.9	1.771	0.065	1.683	1.812	0.129
20	0.95	2.167	0.084	2.009	2.273	0.264
100	0.99	3.182	0.124	2.787	3.548	0.761
200	0.995	3.671	0.141	3.131	4.229	1.098
1000	0.999	4.951	0.182	3.977	6.189	2.212
10000	0.9999	7.203	0.245	5.21	10.145	4.935

Çizelge 4.22. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)

Çizelge 4.23. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)

T Dönüş Periyodu	F (Aşılmama Olasılığı)	F q(F) RI Aşılmama (Büyüme ((Qlasılığı) H		ŀ	lata Bantla	rı
(11)	Clashigi)			95%	5%	Fark
1.111111	0.1	0.376	0.253	0.33	0.427	0.097
1.25	0.2	0.51	0.143	0.471	0.554	0.083
2	0.5	0.864	0.034	0.829	0.899	0.070
5	0.8	1.402	0.042	1.358	1.414	0.056
10	0.9	1.787	0.066	1.698	1.832	0.134
20	0.95	2.174	0.085	2.016	2.279	0.263
100	0.99	3.12	0.119	2.745	3.426	0.681
200	0.995	3.554	0.131	3.061	3.979	0.918
1000	0.999	4.639	0.156	3.866	5.437	1.571
10000	0.9999	6.404	0.188	5.082	7.971	2.889

Susurluk havzası için alan-debi ilişkisi Şekil 4.4 deki gibidir. Susurluk havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi 4.3 nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 0.0767 \,\mathrm{A} + 92.777$$
 (4.3)

Susurluk havzasına en uygun dağılım olan GEV dağılımının ters fonksiyonu daha önce (3.33) nolu denklem yardımı ile tanımlanmıştı. (3.33) nolu denklemde yer alan ζ , alfa ve k parametreleri Çizelge 4.20 de görülmektedir. Bu değerler ve 4.3 nolu denklem yardımı ile hesaplanan \overline{Q} değeri yerine koyularak aşılmama olasılığına karşı gelebilecek taşkının büyüklüğü GEV dağılımına göre hesaplanmış olacaktır(Eş. (4.4)). Veya ortalama debi hesaplandıktan sonra GEV dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -3.270 + 3.981 (-\log F)^{-0.105}$$
(4.4)

Şekil 4.6. Susurluk Havzasının Alan-Q(Debi) ilişkisi

Susurluk havzasının alan-Qort ilişkisi için yapılan regresyon analizi sonuçları Çizelge 4.24 de verilmiştir.

Regresyon İ	statistikleri				
Çoklu R	0.783631				
R Kare	0.614078				
Ayarlı R Kare	0.58835				
Standart Hata	165.3451				
Gözlem	17				
	df	SS	MS	F	Anlamlılık F
Regresyon	1	652525.4	652525.4	23.86793	0.000198
Fark	15	410085.1	27339.01		
Toplam	16	1062610			_
	Katsayılar	Standart Hata	t Stat	P-değeri	_
Kesişim	92.77699	51.0265	1.818212	0.089055	
X Değişkeni 1	0.076746	0.015709	4.885481	0.000198	_

Çizelge 4.24. Regresyon analizi sonuçları

4.4. Kuzey Ege Havzası

Kuzey Ege havzasından toplam 11 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.25 de verilmiştir.

				-
lataovan	Gözlem	Gözlem	Alen	Oort
istasyon	rapan	Suresi	Alan	Qon.
No	Kurum	(yıl)	(km²)	(m³/s)
4-002	DSİ	31	2940	396.03
4-006	DSİ	23	55.3	39.96
4-014B	DSİ	19	65.8	16.46
4-017	DSİ	26	110.7	64.45
4-021	DSİ	21	118.9	76.74
4-024	DSİ	20	486.9	42.79
4-025	DSİ	20	96.9	31.86
4-026	DSİ	19	101.6	88.11
4-028	DSİ	18	173.3	193.83
406	EİE	36	2887.6	347.93
407	EİE	29	1586.4	397.07

Çizelge 4.25. Kuzey Ege Havzasına Ait Bilgiler

Kuzey Ege havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.26 da verilmiştir. Çizelge 3.1 deki kritik Di değerini aşan istasyon bulunmamaktadır.

	Oyui	nbuziuk Olçubu					
İstasyon No	n (gözlem süresi)	Qort. (m³/s)	t	t ₃	t ₄	t5	Di
4-002	31	396.03	0.2869	0.0974	0.0717	0.0309	0.58
4-006	23	39.96	0.2454	0.1130	0.0385	0.0120	1.19
4-014B	19	16.46	0.3212	0.1117	0.1282	0.0612	0.72
4-017	26	64.45	0.3792	0.3121	0.3375	0.2308	2.33
4-021	21	76.74	0.3155	0.2042	0.1251	0.0372	0.09
4-024	20	42.79	0.3865	0.2726	0.1845	0.1095	0.56
4-025	20	31.86	0.3829	0.1243	0.1034	0.1266	1.46
4-026	19	88.11	0.3235	0.1574	0.0220	0.0152	0.63
4-028	18	193.83	0.3918	0.2649	0.0760	-0.0398	1.74
406	36	347.93	0.3034	0.3005	0.1565	-0.0085	1.55
407	29	397.07	0.3049	0.1562	0.1095	0.0595	0.15
Ağı	rlıklı bölgese	el ortalama	0.3262	0.1954	0.1271		

Çizelge 4.26. Kuzey Ege Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

Çizelge 4.27 deki tüm H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.28 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Ekstrem Değer, Pearson Tip 3 ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Pearson Tip 3 dağılımı en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4.29 da görülmektedir.

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0446
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0404
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0088
Standartlaştırılmış H(1) değerleri	0.47
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.086
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.0855
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0176
Standartlaştırılmış H(2) değerleri	0.03
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1015
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1046
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0201
Standartlaştırılmış H(3) değerleri	-0.16

Çizelge 4.27. Kuzey Ege Havzasının Heterojenlik Ölçüsü

DELTA 0.147

Çizeige 4.20. Oygunluk Testi Sonuçları								
GEN. LOJISTIK	L-BASIKLIK= 0.198	Z = 3.01						
GEN. EKSTREM DEĞER	L-BASIKLIK= 0.161	Z = 1.40 *						
GEN. NORMAL	L-BASIKLIK= 0.153	Z = 1.06 *						
PEARSON TÌP III	L-BASIKLIK= 0.135	Z = 0.33 *						
GEN. PARETO	L-BASIKLIK= 0.075	Z = -2.24						

Çizelge 4.28. Uygunluk Testi Sonuçları

Çizelge 4.29. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	K (şekil parametresi)		
GEN. EKST. DEĞER	0.720	0.453	-0.039		
GEN. NORMAL	0.886	0.540	-0.403		
	MU (ortalama)	SIGMA (St.Sap.)	GAMMA (Çarpık.)		
PEAR. TYPE III	1.000	0.604	1.183		
	ζ	ALFA	BETA	GAMMA	
WAKEBY	0.139	1.433	5.276	0.726	-

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.30). Gözlenmiş değerler ve Çizelge 4.30 da verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.7).

Çizelge 4.30. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

		V						
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	PE3	GEV	GNO	Wakeby	у	Göz. Değer
-0.838	1.11	0.1	0.342	0.348	0.346	0.330	-1.218	0.209
-0.476	1.25	0.2	0.490	0.506	0.501	0.486	-0.722	0.395
0.37	2	0.5	0.884	0.887	0.886	0.882	-0.241	0.588
1.5	5	0.8	1.444	1.420	1.428	1.451	0.240	0.828
2.25	10	0.9	1.810	1.787	1.793	1.829	0.739	1.059
2.97	20	0.95	2.152	2.148	2.148	2.170	1.247	1.292
4.6	100	0.99	2.896	3.005	2.971	2.840	1.734	1.647
5.3	200	0.995	3.202	3.388	3.333	3.084	2.170	1.759
6.91	1000	0.999	3.893	4.316	4.207	3.562	2.677	1.951
9.21	10000	0.9999	4.849	5.749	5.552	4.077	3.140	1.974
							3.967	2.169
							4.218	2.597
							4.628	2.285

Şekil 4.7. Kuzey Ege Havzasına Ait Taşkın Frekans Eğrileri

T Dönüş Periyodu	F (Aşılmama	y (gumbel azaltılmış	q(F) (Büyüme	RMSE (Ort.	Hata Bantları		rı
(11)	Olasiligi)	değerler)	Egrisi)	Eĝrisi) Hata) –		5%	Fark
1.111111	0.1	-0.834	0.342	0.237	0.280	0.365	0.085
1.25	0.2	-0.476	0.490	0.144	0.426	0.527	0.101
2	0.5	0.367	0.884	0.042	0.832	0.935	0.103
5	0.8	1.500	1.444	0.037	1.416	1.486	0.07
10	0.9	2.250	1.810	0.062	1.719	1.925	0.206
20	0.95	2.970	2.152	0.082	1.990	2.358	0.368
100	0.99	4.600	2.895	0.112	2.562	3.334	0.772
200	0.995	5.296	3.202	0.122	2.796	3.745	0.949
1000	0.999	6.907	3.893	0.139	3.313	4.679	1.366
10000	0.9999	9.210	4.849	0.157	4.024	6.014	1.99

Çizelge 4.31. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3)

Kuzey Ege havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan Pearson Tip 3 dağılımdır. Bu dağılım kullanılarak, Monte Carlo simülasyon yöntemi ile bölge 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.31 de verilmiştir. Z testine göre GNO dağılımı da eldeki datalara uygundur. Simülasyon çalışması GNO dağılımı içinde yapılmış ve Çizelge 4.32 den de görüldüğü gibi GNO dağılımına göre yapılan simülasyon çalışmasının sonucunda 1.25, 5 ve 10 yıllık dönüş periyotlarına karşılık gelen değerler hariç diğerleri için RMSE değerleri büyümüştür.

Çızeige 4.52. Doigesei Duyume Egrisinin Doğruluk Ölçuleri (GNO)							
T Dönüş Periyodu	onüş F y q(F) RM yodu (Aşılmama azaltılmış (Büyüme (C		q(F) RMSE (Büyüme (Ort.		Hata Bantları		
(YII)	Olasiliği)	değerler)	Egrisi)	Hata)	95%	5%	Fark
1.111111	0.1	-0.834	0.346	0.239	0.279	0.384	0.105
1.25	0.2	-0.476	0.501	0.137	0.437	0.54	0.103
2	0.5	0.367	0.886	0.041	0.835	0.936	0.101
5	0.8	1.500	1.428	0.037	1.393	1.468	0.075
10	0.9	2.250	1.793	0.06	1.716	1.906	0.190
20	0.95	2.970	2.148	0.082	1.989	2.357	0.368
100	0.99	4.600	2.971	0.126	2.568	3.521	0.953
200	0.995	5.296	3.333	0.143	2.805	4.071	1.266
1000	0.999	6.907	4.206	0.18	3.338	5.454	2.116
10000	0.9999	9.210	5.552	0.23	4.067	7.792	3.725

Çizelge 4.32. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)

Kuzey Ege havzası için alan-debi ilişkisi Şekil 4.8 deki gibidir. Kuzey Ege havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.5) nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 6.056 \mathbf{A}^{0.52}$$
 (4.5)

Kuzey Ege havzasına en uygun dağılım olan PE3 dağılımının ters fonksiyonu analitik olarak tanımlanamamaktadır. Alanı bilinen bir bölgenin ortalama debisi (4.5) nolu denklem ile hesaplandıktan sonra PE3 dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

Şekil 4.8. Kuzey Ege Havzasının Alan-Q(Debi) ilişkisi

4.5. Gediz Havzası

Gediz havzasından toplam 12 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.33 de verilmiştir.

3	9			
İstasyon No	Gözlem Yapan Kurum	Gözlem Süresi (yıl)	Alan (km²)	Qort. (m³/s)
5-015	DSİ	20	512.3	120.8
5-018	DSİ	22	39.5	35.87
5-021	DSİ	21	81.1	26.5
5-026	DSİ	21	52.3	35.95
509	EİE	38	901.6	140.94
510	EİE	39	3184.8	187.12
515	EİE	34	739.6	254.58
518	EİE	38	15616.4	316.61
522	EİE	20	818.8	292.47
523	EİE	31	3272.4	333.67
526	EİE	17	1613.6	107.45
524	EİE	18	176	19.98

Çizelge 4.33. Gediz Havzasına Ait Bilgiler

Gediz havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.34 de verilmiştir. Çizelge 3.1 deki kritik Di değerini 526 nolu istasyon aşmaktadır. Fakat bölge bu istasyon dahil edildiği halde homojen çıktığından dolayı bu istasyon analizlerden çıkarılmamıştır(Çizelge 4.35).

	Ölçübü						
İstasyon No	n (gözlem süresi)	Qort. (m³/s)	t	t ₃	t ₄	t ₅	Di
5-015	20	120.8	0.4196	0.3535	0.2013	0.0639	0.37
5-018	22	35.87	0.3436	0.2797	0.2032	0.0430	0.22
5-021	21	26.5	0.3478	0.3815	0.2582	0.1144	1.42
5-026	21	35.95	0.2691	0.1379	0.1835	0.1527	1.69
509	38	140.94	0.3841	0.2705	0.1747	0.0845	0.13
510	39	187.12	0.4419	0.3121	0.1812	0.1107	0.74
515	34	254.58	0.4564	0.3898	0.2027	0.1581	0.92
518	38	316.61	0.3089	0.1375	0.1310	0.0779	0.76
522	20	292.47	0.3370	0.2133	0.1764	0.1824	0.27
523	31	333.67	0.3698	0.3048	0.1704	0.1618	0.74
526	17	107.45	0.4714	0.5707	0.4147	0.2669	2.91 *
524	18	19.98	0.4569	0.3246	0.2437	0.1919	1.82
Ağırlıklı bölg	esel ortalama		0.3838	0.2957	0.1994		

Çizelge 4.34. Gediz Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

Çizelge 4.35 deki tüm H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.36 da verilmiştir. Bu sonuçlara göre Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Lojistik ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Ekstrem Değer dağılımı en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4. 37 de görülmektedir.

Çızeige 4.55. Gediz Havzasının Heterojenink Ölçüsü	
HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0604
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0511
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0113
Standartlaştırılmış H(1) değerleri	0.83
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.0975
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.0998
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.02
Standartlaştırılmış H(2) değerleri	-0.12
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.0897
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1223
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0242
Standartlaştırılmış H(3) değerleri	-1.35

Çizelge 4.35. Gediz Havzasının Heterojenlik Ölçüsü

Çizelge 4.56. Oygunluk Tesh Sonuçları							
GEN. LOJISTIK	L-BASIKLIK= 0.240	Z = 0.99 *					
GEN. EKSTREM DEĞER	L-BASIKLIK= 0.212	Z = 0.11 *					
GEN. NORMAL	L-BASIKLIK= 0.191	Z = -0.56 *					
PEARSON TÌP III	L-BASIKLIK= 0.156	Z = -1.72					
GEN. PARETO	L-BASIKLIK= 0.139	Z = -2.27					

1 1 26 11 July Tasti C

Çizelge 4.37. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

	ζ (yer	ALFA (ölçek	K (Şekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
GEN. LOJISTIK	0.821	0.331	-0.296		
GEN. EKST. DEĞER	0.638	0.451	-0.187		
GEN. NORMAL	0.803	0.58	-0.618		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.116	1.098	2.806	0.501	0.159

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.38). Gözlenmiş değerler ve Çizelge 4.38 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.8).

Çizelge 4.38. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	Wakeby	У	Göz. Değer
-0.838	1.11	0.1	0.286	0.290	0.289	0.269	-1.232	0.190
-0.476	1.25	0.2	0.445	0.433	0.422	0.411	-0.768	0.342
0.37	2	0.5	0.821	0.810	0.803	0.818	-0.249	0.496
1.5	5	0.8	1.388	1.419	1.443	1.422	0.247	0.765
2.25	10	0.9	1.845	1.900	1.936	1.900	0.735	1.004
2.97	20	0.95	2.375	2.429	2.458	2.430	1.222	1.236
4.6	100	0.99	4.057	3.926	3.816	3.912	1.731	1.572
5.3	200	0.995	5.056	4.717	4.475	4.677	2.229	1.835
6.91	1000	0.999	8.328	6.997	6.201	6.816	2.685	2.098
9.21	10000	0.9999	16.748	11.710	9.210	11.006	3.444	3.129
							4.164	2.984
							4.661	3.588

Şekil 4.9. Gediz Havzasına Ait Taşkın Frekans Eğrileri

T Dönüş Periyodu (Yıl)	F (Aşılmama Olasılığı)	y (gumbel azaltılmış değerler)	q(F) (Büyüme Fărisi)	RMSE (Ort. Hata)	95%	Hata Bantla	arı Fark
		0.004	0.000	0.204	0.010	0.007	0.407
1.111111	0.1	-0.834	0.290	0.394	0.210	0.337	0.127
1.25	0.2	-0.476	0.433	0.197	0.366	0.482	0.116
2	0.5	0.367	0.810	0.057	0.751	0.860	0.109
5	0.8	1.500	1.419	0.045	1.358	1.455	0.097
10	0.9	2.250	1.900	0.070	1.807	1.996	0.189
20	0.95	2.970	2.429	0.095	2.242	2.652	0.410
100	0.99	4.600	3.926	0.158	3.334	4.788	1.454
200	0.995	5.296	4.717	0.187	3.839	6.028	2.189
1000	0.999	6.907	6.997	0.263	5.183	10.178	4.995
10000	0.9999	9.210	11.712	0.398	7.297	20.822	13.525

Çizelge 4.39. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)

Gediz havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan GEV dağılımdır. Bu dağılım kullanılarak, Monte Carlo simülasyon yöntemi ile bölge 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.39 da verilmiştir.

Gediz havzası için alan-birim debi ilişkisi Şekil 4.10 daki gibidir. Gediz havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.6) nolu formül yardımı ile hesaplanabilir.

$$\frac{Q}{A} = q = 5.509 A^{-0.534} \Rightarrow \overline{Q} = 5.509 A^{0.466}$$
(4.6)

Gediz havzasına en uygun dağılım olan GEV dağılımının ters fonksiyonu daha önce (3.33) nolu denklem yardımı ile tanımlanmıştı. Çizelge 4.37 de verilmiş olan GEV dağılımına ait ζ , alfa ve k parametreleri ve (4.6) nolu denklemden elde edilen \overline{Q} değeri (3.33) nolu denklemde yerine yazılırsa Gediz havzası için gelebilecek taşkının büyüklüğü aşılmama olasılığına bağlı olarak (4.7) nolu formül yardımı ile hesaplanabilir. Veya ortalama debi hesaplandıktan sonra GEV dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -1.774 + 2.412(-\log F)^{-0.187}$$
(4.7)

Şekil 4.10. Gediz Havzasının Alan-q(Birim Debi) ilişkisi

4.6. Küçük Menderes Havzası

Küçük Menderes havzasından toplam 8 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.40 da verilmiştir.

İstasyon No	Gözlem Yapan Kurum	Gözlem Süresi (yıl)	Alan (km²)	Qort. (m ³ /s)
6-001	DSİ	18	445	95.76
6-006	DSİ	19	32	12.26
6-007	DSİ	19	512.9	211.37
6-009	DSİ	20	40.3	18.11
6-010	DSİ	15	41	11.25
601	EİE	39	3255.2	158.28
6-011	DSİ	11	37	14.94
6-013	DSİ	11	83	24.71

Çizelge 4.40. Küçük Menderes Havzasına Ait Bilgiler

Küçük Menderes havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.41 de verilmiştir. Çizelge 3.1 deki n=8 değerine karşılık gelen kritik Di değerini hiçbir istasyon aşmamaktadır.

Çizelge 4.41. Küçük Menderes Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

	n (gözlem	Qort.					
İstasyon No	süresi)	(m ³ /s)	t	t ₃	t ₄	t ₅	Di
6-001	18	95.76	0.4495	0.3379	0.2274	0.1259	1.51
6-006	19	12.26	0.3022	0.0855	0.1044	0.0265	1.87
6-007	19	211.37	0.3552	0.1238	0.1455	0.1776	0.83
6-009	20	18.11	0.2692	0.0672	0.2278	0.0189	1.67
6-010	15	11.25	0.3570	0.2781	0.2871	0.2000	0.35
601	39	158.28	0.3807	0.3143	0.2714	0.1956	0.10
6-011	11	14.94	0.3916	0.4148	0.2957	0.1241	1.19
6-013	11	24.71	0.3969	0.3929	0.3149	0.2070	0.48
Ağırlıklı bölgesel ortalama			0.3608	0.2416	0.2303		

Çizelge 4.42 deki tüm H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.43 de verilmiştir. Bu sonuçlara göre, Genelleştirilmiş Lojistik dağılımı bölgeye uygun bulunmuştur. Bu dağılıma ve Wakeby dağılımına ait parametreler Çizelge 4.44 de görülmektedir.

Çizelge 4.42. Küçük Menderes Havzasının Heterojenlik Ölçüsü

HETEROJENLİK OLÇUSU (Simülasyon Sayısı=500)					
Gözlenen değerlerin Grup LCv lerinin Standart sapması					
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0616				
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0186				
Standartlaştırılmış H(1) değerleri	-0.5				
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.124				
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1249				
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0318				
Standartlaştırılmış H(2) değerleri	-0.03				
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1316				
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1488				
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0386				
Standartlaştırılmış H(3) değerleri	-0.44				

Çizelge 4.43. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)

	-	-
GEN. LOJISTIK	L-BASIKLIK= 0.215	Z = -0.97 *
GEN. EKSTREM DEĞER	L-BASIKLIK= 0.182	Z = -1.66
GEN. NORMAL	L-BASIKLIK= 0.168	Z = -1.96
PEARSON TIP III	L-BASIKLIK= 0.143	Z = -2.49
GEN. PARETO	L-BASIKLIK= 0.102	Z = -3.36

Çizelge 4.44. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

	ζ (yer	ALFA (ölçek	K (şekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
GEN. LOJİSTİK	0.861	0.327	-0.242		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.002	2.57	3.997	0.366	0.242

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.45). Gözlenmiş değerler ve Çizelge 4.45 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.11).

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	Wakeby	у	Göz. Değer
-0.838	1.11	0.1	0.303	0.262	-1.183	0.133
-0.476	1.25	0.2	0.475	0.466	-0.714	0.355
0.37	2	0.5	0.861	0.881	-0.242	0.569
1.5	5	0.8	1.399	1.365	0.242	0.820
2.25	10	0.9	1.809	1.775	0.733	1.052
2.97	20	0.95	2.265	2.258	1.227	1.192
4.6	100	0.99	3.616	3.747	1.722	1.507
5.3	200	0.995	4.371	4.591	2.138	1.635
6.91	1000	0.999	6.689	7.192	2.641	1.853
9.21	10000	0.9999	12.036	13.21	3.403	3.030
					3.937	2.718
					4.709	4.378

Çizelge 4.45. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.11. Küçük Menderes Havzasına Ait Taşkın Frekans Eğrileri

Küçük Menderes havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan GLO dağılımıdır. Bu dağılım kullanılarak, Monte Carlo simülasyon yöntemi ile bölge 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.46 da verilmiştir.

Çizelge 4.40. Dolgesel Duyune Egrisinii Dogruluk Olçuleri (OLO)							
T Dönüş Porivodu	F	y (gumbel	q(F)	RMSE		-lata Bantlari	
(Yil)	(Aşılmama Olasılığı)	değerler)	Eğrisi)	Hata)	95%	5%	Fark
1.111111	0.1	-0.834	0.303	0.421	0.193	0.430	0.237
1.25	0.2	-0.476	0.475	0.203	0.375	0.568	0.193
2	0.5	0.367	0.861	0.073	0.776	0.966	0.190
5	0.8	1.500	1.399	0.053	1.321	1.484	0.163
10	0.9	2.250	1.809	0.080	1.684	2.000	0.316
20	0.95	2.970	2.265	0.114	2.013	2.655	0.642
100	0.99	4.600	3.616	0.209	2.745	4.928	2.183
200	0.995	5.296	4.371	0.256	3.067	6.381	3.314
1000	0.999	6.907	6.690	0.385	3.878	11.585	7.707
10000	0.9999	9.210	12.039	0.639	5.274	27.054	21.780

Çizelge 4.46. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Küçük Menderes havzası için alan-debi ilişkisi Şekil 4.12 deki gibidir. Küçük Menderes havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.8) nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 1.4113 \mathbf{A}^{0.66}$$
 (4.8)

Havzanın datalarına en iyi uyumu sağlayan GLO dağılımının ters fonksiyonu daha önce (3.37) nolu denklem yardımı ile tanımlanmıştı. Çizelge 4.44 de verilmiş olan GLO dağılımına ait ζ , alfa ve k parametreleri ve (4.8) nolu denklemden elde edilen \overline{Q} değeri (3.37) nolu denklemde yerine yazılırsa Küçük Menderes havzası için gelebilecek taşkının büyüklüğü aşılmama olasılığına bağlı olarak (4.9) nolu formül yardımı ile hesaplanabilir. Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri (Çizelge 4.46) ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.490 + 1.351 \left(\frac{(1-F)}{F}\right)^{-0.242}$$
(4.9)

Şekil 4.12. Küçük Menderes Havzasının Alan-Qort ilişkisi

4.7. Büyük Menderes Havzası

Büyük Menderes havzasından toplam 27 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.47 de verilmiştir.

Büyük Menderes havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.48 de verilmiştir. Bölge bütün olarak değerlendirildiğinde Çizelge 3.1 deki n=27 değerine karşılık gelen kritik Di değerine göre 734 nolu istasyon uyumsuz olarak değerlendirilmektedir. Fakat heterojenlik testine göre bölge tamamen heterojen çıkmıştır. Bundan dolayı bölge iki alt bölgeye ayrılmış ve Çizelge 4.48 dende görüldüğü gibi iki bölgede de uyumsuz data kalmamıştır.

Çizelge 4.49 daki 1. ve 2. bölge için tüm H değerlerine göre bölgeler kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.50 de verilmiştir. Bu sonuçlara göre, 1.bölgeye Genelleştirilmiş Lojistik ve Genelleştirilmiş Ekstrem Değer, 2.bölgeye ise Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal ve Genelleştirilmiş Pareto dağılımları uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.51 de verilmiştir.

, ,	Gözlem	Gözlem			0
İstasyon	Yapan	Süresi		Qort.	
No	Kurum	(yıl)	Alan (km ²)	(m ³ /s)	Kot (m)
7-003	DSİ	37	2015	73.1	837
7-035	DSİ	33	1462	316.0	112
7-037	DSİ	24	441.1	278.0	73
7-049	DSİ	18	220.8	44.1	1025
7-065	DSİ	20	9006	233.7	307
7-073	DSİ	19	18.8	5.6	1238
7-075	DSİ	21	215.3	7.3	1010
7-082	DSİ	16	184	44.7	111
707	EİEİ	32	23889	411.9	8
701	EİEİ	45	948	245.7	262
706	EİEİ	45	19595.6	205.2	25
725	EİEİ	29	1277.6	29.4	760
734	EİEİ	13	2839.6	324.4	24
735	EİEİ	13	1538.4	34.4	475
713	EİEİ	47	3945.6	38.3	813
7-014	DSİ	32	165	109.2	70
7-039	DSİ	31	90.5	41.8	62
7-081	DSİ	17	11852	91.9	130
7-083	DSİ	17	668.3	21.4	855
704	EİEİ	44	3138	222.0	155
712	EİEİ	43	12798.8	146.4	120
726	EİEİ	29	9633.6	236.2	210
728	EİEİ	26	256	16.8	300
731	EİEİ	20	167.2	205.3	515
732	EİEİ	20	854.8	471.3	390
733	EİEİ	20	236	86.0	435
7-030	DSİ	34	99	28.3	177

Cizelge 4.47. Büyük Menderes Havzasına Ait Bilgiler

								_	
lge	lata au	n (a:ä=laaa	Oart					Tüm	
Bö	Istasy	(goziem süresi)	QOIT. (m ³ /s)	f	ta	t.	t.	Bolge	ы
	7-003	37	73.1	0 3442	0 2507	0 1708	0 0732	0.09	0.40
	7-035	33	316.0	0.2533	0.1816	0.1832	0.0388	0.00	0.36
	7-037	24	278.0	0.2733	0 1548	0 1405	0.0531	0.46	0.31
	7-049	18	44 1	0.2528	0.2991	0.1400	0.0842	0.40	0.57
	7-065	20	233.7	0.3422	0.1288	0.0968	0.0552	0.87	0.52
	7-073	19	5.6	0.3831	0.3056	0.2267	0.1530	0.12	1.31
g	7-075	21	7.3	0.3851	0.2855	0.1274	0.0315	0.59	1.79
3ölç	7-082	16	44.7	0.3076	0.0751	0.0743	0.0412	1.17	0.67
— Ш	707	32	411.9	0.2900	0.4317	0.3903	0.1881	2.12	1.94
	701	45	245.7	0.2805	0.0580	0.1660	0.0698	1.67	1.22
	706	45	205.2	0.2538	0.1133	0.0834	0.0326	1.15	1.27
	725	29	29.4	0.2962	0.2161	0.2021	0.1069	0.18	0.01
	734	13	324.4	0.3158	0.1161	0.2583	0.1637	3.20 *	2.70
	735	13	34.4	0.3134	0.1728	0.1584	0.1091	0.3	0.07
	713	47	38.3	0.2043	0.3415	0.3184	0.1613	2.52	1.86
	7-014	32	109.2	0.4331	0.4804	0.3464	0.1870	1.01	0.91
	7-039	31	41.8	0.4221	0.3991	0.2265	0.1263	0.25	0.02
	7-081	17	91.9	0.3509	0.3546	0.2506	0.1348	0.13	0.43
	7-083	17	21.4	0.5854	0.4898	0.2311	0.0672	2.45	2.14
e	704	44	222.0	0.5186	0.5716	0.2505	0.0504	1.77	2.68
ölg	712	43	146.4	0.3761	0.3557	0.2212	0.1560	0.09	0.18
Ш Ш	726	29	236.2	0.5090	0.4836	0.2551	0.1578	1.03	0.42
	728	26	16.8	0.3870	0.3034	0.1532	0.1020	0.34	0.97
	731	20	205.3	0.3998	0.4133	0.3054	0.2231	0.47	0.5
	732	20	471.3	0.3062	0.3089	0.1144	0.0313	2.34	2.21
	733	20	86.0	0.4139	0.3435	0.1749	0.0683	0.33	0.54
	7-030	34	28.3	0.4071	0.4399	0.3452	0.2532	0.97	1.01
	Tüm Bö bölge	blge için Ağ esel ortalaı	ğırlıklı ma	0.3516	0.3064	0.2181			

Çizelge 4.48. Büyük Menderes Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

	Tüm		
HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	Bölge	1.Bölge	2.Bölge
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0913	0.0498	0.0686
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0516	0.0425	0.0571
Grup LCv lerinin Standart sapmasının simülasyonlarının			
standart sapması	0.008	0.0087	0.0132
Standartlaştırılmış H(1) değerleri	4.94 **	0.84	0.87
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1497	0.1081	0.094
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1033	0.0974	0.1016
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0142	0.0175	0.0215
Standartlaştırılmış H(2) değerleri	3.25 **	0.61	-0.35
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1486	0.122	0.0978
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1282	0.1196	0.1305
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0176	0.02	0.0282
Standartlaştırılmış H(3) değerleri	1.16 *	0.12	-1.16

Çizelge 4.49. Büyük Menderes Havzasının Heterojenlik Ölçüsü

Çizelge 4.50. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)

Dağılımlar	1.Bölge	9	2.Bölge			
GEN. LOJISTIK	L-KURT.= 0.204	Z = 0.00 *	L-KURT.= 0.316	Z = 1.49 *		
GEN. EXTR. DEĞ.	L-KURT.= 0.168	Z = -1.47 *	L-KURT.= 0.300	Z = 1.04 *		
GEN. NORMAL	L-KURT.= 0.158	Z = -1.88	L-KURT.= 0.265	Z = 0.00 *		
PEARSON TIP III	L-KURT.= 0.138	Z = -2.70	L-KURT.= 0.204	Z = -1.78		
GEN. PARETO	L-KURT.= 0.084	Z = -4.88	L-KURT.= 0.243	Z = -0.64 *		

Çizelge 4.51. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Bölae	Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	K (şekil parametresi)		
	GEN. EXTR. DEĞER	0.747	0.391	-0.065		
1 Bölgo	GEN. LOJISTIK	0.901	0.268	-0.212		
т.воіде		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.155	2.620	5.917	0.434	0.068
	GEN. LOJISTIK	0.727	0.314	-0.423		
	GEN. EXTR. DEĞER	0.564	0.389	-0.359		
2 Bölgo	GEN. NORMAL	0.698	0.540	-0.905		
z.boige	GEN. PARETO	0.222	0.631	-0.188		
		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0	75.926	335.669	0.625	0.193

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.52, 4.53). Gözlenmiş değerler ve Çizelge 4.52, 4.53 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.13, 4.14).

		0			0		
y (Gumbel							
àzal.	T Dön.	Aşılmama					Göz.
Değ.)	Per.	olasılığı	GLO	GEV	WAKEBY	у	Değer
-0.838	1.11	0.1	0.431	0.430	0.407	-1.218	0.261
-0.476	1.25	0.2	0.580	0.564	0.578	-0.725	0.475
0.37	2	0.5	0.901	0.893	0.899	-0.241	0.665
1.5	5	0.8	1.333	1.364	1.337	0.246	0.853
2.25	10	0.9	1.651	1.695	1.680	0.733	1.051
2.97	20	0.95	1.998	2.029	2.040	1.222	1.229
4.6	100	0.99	2.988	2.845	2.945	1.717	1.406
5.3	200	0.995	3.523	3.220	3.366	2.208	1.626
6.91	1000	0.999	5.111	4.158	4.423	2.702	1.896
9.21	10000	0.9999	8.565	5.682	6.150	3.509	2.254
						4.189	2.409
						4.718	2.676

Çizelge 4.52. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)

Çizelge 4.53. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel	l
olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge)	

У									
(Gumbel	Т								
azal.	Dön.	Aşılmama							Göz.
Değ.)	Per.	olasılığı	GLO	GEV	GNO	GPA	WAKEBY	У	Değer
-0.838	1.11	0.1	0.278	0.284	0.289	0.290	0.293	-1.211	0.246
-0.476	1.25	0.2	0.398	0.394	0.380	0.366	0.369	-0.722	0.340
0.37	2	0.5	0.727	0.717	0.698	0.690	0.690	-0.248	0.446
1.5	5	0.8	1.318	1.337	1.379	1.409	1.406	0.243	0.627
2.25	10	0.9	1.863	1.911	2.004	2.042	2.038	0.748	0.854
2.97	20	0.95	2.561	2.628	2.744	2.763	2.761	1.240	1.191
4.6	100	0.99	5.161	5.131	4.998	4.848	4.862	1.728	1.585
5.3	200	0.995	6.937	6.734	6.238	5.960	5.987	2.223	2.170
6.91	1000	0.999	13.734	12.417	9.875	9.177	9.261	2.681	2.665
9.21	10000	0.9999	36.381	29.057	17.365	15.856	16.115	3.396	3.321
								4.217	3.500
								4.680	4.546

Şekil 4.13. Büyük Menderes Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)

Şekil 4.14. Büyük Menderes Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)

T Dönüş Periyodu (Yıl)	F (Aşılmama Olasılığı)	q(F) (Büyüme Fărisi)	RMSE (Ort. Hata)	Hata Bantları		Fark
(11)	Clashigi)	Egnol)		95%	5%	
1.111111	0.1	0.431	0.250	0.357	0.432	0.075
1.25	0.2	0.580	0.131	0.523	0.592	0.069
2	0.5	0.901	0.029	0.864	0.920	0.056
5	0.8	1.333	0.042	1.310	1.365	0.055
10	0.9	1.651	0.067	1.613	1.725	0.112
20	0.95	1.998	0.088	1.922	2.141	0.219
100	0.99	2.988	0.130	2.771	3.437	0.666
200	0.995	3.523	0.146	3.220	4.179	0.959
1000	0.999	5.111	0.185	4.429	6.553	2.124
10000	0.9999	8.566	0.240	6.718	12.414	5.696

Çizelge 4.54. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Büyük Menderes havzası 1.Bölge için en uygun dağılım, en küçük mutlak Z değerine sahip olan GLO, 2.bölge için ise GNO dağılımıdır. Bu dağılımlar kullanılarak, Monte Carlo simülasyon yöntemi ile bölgeler 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyonlardan elde edilen sonuçlar Çizelge 4.54 ve 55 de verilmiştir.

T Dönüş	F	q(F)				
Periyodu	(Aşılmama	(Büyüme	RMSE	Hata E	Bantları	
(Yil)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.289	0.438	0.218	0.290	0.072
1.25	0.2	0.380	0.278	0.315	0.407	0.092
2	0.5	0.698	0.096	0.627	0.753	0.126
5	0.8	1.379	0.053	1.320	1.409	0.089
10	0.9	2.004	0.091	1.902	2.070	0.168
20	0.95	2.744	0.125	2.490	2.967	0.477
100	0.99	4.998	0.189	4.206	6.040	1.834
200	0.995	6.238	0.212	5.072	7.880	2.808
1000	0.999	9.875	0.261	7.495	13.739	6.244
10000	0.9999	17.366	0.323	12.144	27.564	15.420

Çizelge 4.55. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)

Büyük Menderes havzası 1.bölge için alan-kot ilişkisi Şekil 4.15 deki gibidir. Büyük Menderes havzası için, kotu bilinen herhangi bir bölgenin ortalama debisi 1.bölge için (4.10) nolu formül yardımı ile, 2.bölge için ise (4.11) nolu formül yardımı ile hesaplanabilir.

$$Q = -72.582Ln(K) + 543.24$$
 (1.Bölge) (4.10)

$$\frac{\overline{Q}}{A} = q = 17.362 A^{-0.7525} \Rightarrow 17.362 A^{0.2475}$$
 (2.Bölge) (4.11)

GLO dağılımının ters fonksiyonunda Çizelge 4.51 de verilmiş olan GLO dağılımına ait ζ , alfa ve k parametreleri ve (4.10) nolu denklemden elde edilen \overline{Q} değeri yerine yazılırsa Büyük Menderes havzasının 1.bölgesi için gelebilecek

taşkının büyüklüğü aşılmama olasılığına bağlı olarak (4.12) nolu formül yardımı ile hesaplanabilir. Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri (Çizelge 4.46) ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir. 2. bölge için GNO dağılımının ters fonksiyonu analitik olarak verilemediğinden (4.11) nolu denklemden hesaplanan debi değeri q(F) değerleri ile çarpılarak taşkın debisi hesaplanabilir.

$$\frac{Q}{\overline{Q}} = -0.363 + 1.264 \left(\frac{(1-F)}{F}\right)^{-0.212}$$
(4.12)

Şekil 4.15. Büyük Menderes Havzasının Alan-Qort ilişkisi (1.Bölge)

Şekil 4.16. Büyük Menderes Havzasının Alan-q ilişkisi (2.Bölge)

4.8. Batı Akdeniz Havzası

Batı Akdeniz havzasından toplam 17 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.56 da verilmiştir.

Batı Akdeniz havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.57 de verilmiştir. Bölge bütün olarak değerlendirildiğinde Çizelge 3.1 deki n=17 değerine karşılık gelen kritik Di değerine göre hiçbir istasyon uyumsuz olarak tespit edilmemiştir.

Çizelge 4.58 deki tüm H değerlerine göre bölgenin tamamı kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.59 da verilmiştir. Bu sonuçlara göre, Genelleştirilmiş Normal, Genelleştirilmiş Ekstrem Değer ve Pearson Tip 3 dağılımları uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.60 da verilmiştir.

<u> </u>	- 1.30. Duil I	indeniiz Hu	Zabilla The	Jinghei
lotoovon	Gözlem	Cäzlom		Oort
Istasyon	rapan	Goziem		
No	Kurum	Süresi (yıl)	Alan (km²)	(m³/s)
8-001	DSİ	26	908	77.83
8-009	DSİ	23	3280	76.94
8-013	DSİ	24	807	153.04
8-018	DSİ	28	126.2	18.33
8-019	DSİ	24	145	106.33
8-028	DSİ	28	2461	353.54
8-049	DSİ	23	222.2	53.39
8-054	DSİ	21	86.6	3.78
8-055	DSİ	23	114.7	7.42
8-060	DSİ	16	269	14.36
8-061	DSİ	21	14.1	1.72
8-065	DSİ	18	444.9	7.43
808	EİEİ	36	546.8	59.86
809	EİEİ	43	3856.4	176.52
811	EİEİ	37	4954.8	720.7
812	EİEİ	36	2448	532.37
815	EİEİ	19	245	140.06

Cizelge 4.56. Batı Akdeniz Havzasına Ait Bilgiler

İstasyon No	n (gözlem süresi)	Qort. (m ³ /s)	t	t ₂	t ₄	t _s	Di
8-001	26	77.83	0.4314	0.3175	0.0787	-0.0241	1.41
8-009	23	76.94	0.3118	0.1077	0.1440	0.0915	2.30
8-013	24	153.04	0.3233	0.2618	0.2223	0.0699	1.10
8-018	28	18.33	0.4485	0.3867	0.2261	0.0592	1.76
8-019	24	106.33	0.2856	0.1095	0.1208	0.0487	0.80
8-028	28	353.54	0.3098	0.1397	0.1109	0.0474	0.48
8-049	23	53.39	0.3342	0.2122	0.0784	0.0419	0.87
8-054	21	3.78	0.3790	0.2969	0.2085	0.1779	0.39
8-055	23	7.42	0.3966	0.3158	0.1331	0.0253	0.66
8-060	16	14.36	0.3827	0.2151	0.0504	0.0467	1.11
8-061	21	1.72	0.2976	0.2018	0.2475	0.0966	1.28
8-065	18	7.43	0.2940	0.1574	0.0490	0.0188	2.02
808	36	59.86	0.3978	0.3172	0.2029	0.1259	0.52
809	43	176.52	0.3635	0.3031	0.2113	0.0872	0.63
811	37	720.7	0.3706	0.2030	0.0853	0.0822	0.76
812	36	532.37	0.2853	0.1481	0.1376	0.0661	0.60
815	19	140.06	0.3325	0.2239	0.2006	0.1013	0.30
Ağırlı	klı bölgesel o	ortalama	0.3518	0.235	0.1513		

Çizelge 4.57. Batı Akdeniz Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

Çizelge 4.58. Batı Akdeniz Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0498
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.044
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0077
Standartlaştırılmış H(1) değerleri	0.75
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.0859
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.088
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0141
Standartlaştırılmış H(2) değerleri	-0.15
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.0989
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1075
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0161
Standartlaştırılmış H(3) değerleri	-0.53

Cizelge 4.59.	Uvgunluk	Testi Sonuclari	(%90 Kabi	ıl edilebilir	düzevde)
3 0 0	- 10		(

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
GEN. LOJISTIK	L-BASIKLIK= 0.213	Z = 2.90
GEN. EKS. DEĞER	L-BASIKLIK= 0.179	Z = 1.24 *
GEN. NORMAL	L-BASIKLIK= 0.166	Z = 0.60 *
PEARSON TÌP III	L-BASIKLIK= 0.142	Z = -0.59 *
GEN. PARETO	L-BASIKLIK= 0.098	Z = -2.75

Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	K (şekil parametresi)		
GEV	0.685	0.459	-0.099		
GNO	0.854	0.565	-0.487		
	MU (ortalama)	SIGMA (St.Sap.)	GAMMA (Çarpık.)		
PE3	1	0.664	1.417		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.097	1.745	6.625	0.723	-0.073

Çizelge 4.60. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.61). Gözlenmiş değerler ve Çizelge 4.61 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.17).

		<u> </u>				<u> </u>		
y (Gumbel								
azal.	T Dön.	Aşılmama						Göz.
Değ.)	Per.	olasılığı	GEV	GNO	PE3	Wakeby	у	Değer
-0.838	1.11	0.1	0.318	0.316	0.312	0.305	-1.228	0.190
-0.476	1.25	0.2	0.472	0.464	0.449	0.46	-0.741	0.356
0.37	2	0.5	0.857	0.854	0.849	0.846	-0.249	0.562
1.5	5	0.8	1.428	1.441	1.466	1.459	0.235	0.768
2.25	10	0.9	1.843	1.859	1.887	1.894	0.725	1.037
2.97	20	0.95	2.271	2.278	2.288	2.307	1.228	1.285
4.6	100	0.99	3.36	3.296	3.177	3.191	1.722	1.605
5.3	200	0.995	3.882	3.762	3.549	3.541	2.215	1.927
6.91	1000	0.999	5.236	4.92	4.397	4.289	2.742	2.100
9.21	10000	0.9999	7.587	6.794	5.582	5.218	3.445	2.330
							4.220	2.605
							4.680	3.186

Çizelge 4.61. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.17. Batı Akdeniz Havzasına Ait Taşkın Frekans Eğrileri

Çizelge 4.62. Batı Akdeniz Havzası için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3)

T Dönüş Periyodu (Yıl)	F (Aşılmama Olasılığı)	q(F) (Büyüme Eărisi)	RMSE (Ort. Hata)	Hata Bantları		rı
(11)	Clashigi)	Egnol		95%	5%	Fark
1.111111	0.1	0.312	0.306	0.259	0.328	0.069
1.25	0.2	0.449	0.16	0.407	0.474	0.067
2	0.5	0.849	0.033	0.815	0.878	0.063
5	0.8	1.466	0.039	1.435	1.484	0.049
10	0.9	1.887	0.06	1.817	1.94	0.123
20	0.95	2.288	0.075	2.167	2.389	0.222
100	0.99	3.177	0.097	2.937	3.416	0.479
200	0.995	3.549	0.103	3.254	3.845	0.591
1000	0.999	4.396	0.114	3.969	4.847	0.878
10000	0.9999	5.581	0.125	4.969	6.271	1.302

Batı Akdeniz havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan PE3 dağılımıdır. Fakat GNO dağılımının Z değeri PE3 dağılımının Z değerine çok yakın olduğundan her iki dağılım da kullanılarak, Monte Carlo simülasyon yöntemi ile bölge 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyonlardan elde edilen sonuçlar Çizelge 4.62 ve 4.63 de verilmiştir. Çizelgelerden de anlaşıldığı gibi PE3 dağılımının ortalama hata değerleri ve hata bantları arasındaki farklar daha küçüktür.
T Dönüş Periyodu (Yıl)	F (Aşılmama Olasılığı)	q(F) (Büyüme Eărisi)	RMSE (Ort. Hata)	F	lata Bantları		
()	Clashigi)	Lg1131)		95%	5%	Fark	
1.111111	0.1	0.316	0.302	0.261	0.341	0.080	
1.25	0.2	0.464	0.15	0.423	0.493	0.070	
2	0.5	0.854	0.032	0.819	0.881	0.062	
5	0.8	1.441	0.038	1.404	1.459	0.055	
10	0.9	1.859	0.059	1.792	1.91	0.118	
20	0.95	2.278	0.075	2.16	2.385	0.225	
100	0.99	3.296	0.103	3.01	3.619	0.609	
200	0.995	3.761	0.113	3.386	4.199	0.813	
1000	0.999	4.92	0.133	4.306	5.725	1.419	
10000	0.9999	6.793	0.158	5.732	8.335	2.603	

Çizelge 4.63. Batı Akdeniz Havzası için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)

Batı Akdeniz havzası için alan-debi ilişkisi Şekil 4.18 deki gibidir. Batı Akdeniz havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.13) nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{O}} = 0.2046 \mathbf{A}^{0.8966}$$
 (4.13)

Batı Akdeniz havzası için PE3 dağılımının ters fonksiyonu analitik olarak verilemediğinden (4.13) nolu denklemden hesaplanan debi değeri Çizelge 4.62 de verilen q(F) değerleri ile çarpılarak taşkın debisi hesaplanabilir.

Şekil 4.18. Batı Akdeniz Havzasının Alan-Qort ilişkisi

Batı Akdeniz havzasının alan-Qort ilişkisi için yapılan regresyon analizi sonuçları Çizelge 4.64 de verilmiştir.

Regresyon	İstatistikleri	_									
Çoklu R	0.82295673										
R Kare	0.67725778										
Ayarlı R Kare	0.65574163										
Standart Hata	1.02980337										
Gözlem	17										
	df	SS	MS	F	Anlamlılık F						
Regresyon	1	33.380904	33.380904	31.47672058	0.0000497						
Fark	15	15.9074246	1.06049497								
Toplam	16	49.2883286									
	Katsayılar	Standart Hata	t Stat	P-değeri	_						
Kesişim	-1.58667981	1.01401269	-1.5647534	0.138489628	_						
X Değişkeni 1	0.89660518	0.15981094	5.6104118	0.0000497							

Çizelge 4.64. Regresyon analizi sonuçları

4.9. Antalya Havzası

Antalya havzasından toplam 17 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.65 de verilmiştir.

				0
	Gözlem	Gözlem		
İstasyon	Yapan	Süresi		Qort.
No	Kurum	(yıl)	Alan (km ²)	(m ³ /s)
915	EİEİ	19	3781.0	20.6
9-011	DSİ	25	130.7	5.5
9-039	DSİ	18	217.7	14.8
9-002	DSİ	29	68.2	28.5
9-042	DSİ	12	48.7	3.9
9-047	DSİ	16	37.1	4.4
9-060	DSİ	13	111.2	35.3
9-065	DSİ	15	103.5	17.8
9-013	DSİ	29	190.1	287.1
9-056	DSİ	17	1781.5	94.4
902	EİEİ	39	1942.4	795.5
916	EİEİ	20	6034.6	447.7
917	EİEİ	30	948.8	515.5
918	EİEİ	17	1324.4	963.4
9-067	DSİ	12	303.2	147.0
9-068	DSİ	12	362.8	215.8
911	EİEİ	9	438.0	372.1

Çizelge 4.65. Antalya Havzasına Ait Bilgiler

Antalya havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.66 da verilmiştir. Bölge bütün olarak değerlendirildiğinde kritik Di değerine göre bölgede uyumsuz istasyon bulunmamaktadır. Fakat heterojenlik testine göre bölge tamamen heterojen çıkmıştır. Bundan dolayı bölge iki alt bölgeye ayrılmış ve Çizelge 4.66 danda görüldüğü gibi iki bölgede de uyumsuz data tespit edilmemiştir. Çizelge 4.67 deki 1. ve 2. bölge için tüm H değerlerine göre bölgeler kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.68 de verilmiştir. Bu sonuçlara göre, Genelleştirilmiş Lojistik, 1.bölgeye Genelleştirilmiş Ekstrem Değer ve Genelleştirilmiş Normal dağılım, 2.bölgeye ise Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal ve Pearson Tip 3 dağılımları uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.69 da verilmiştir.

Çizelge 4.66. Antalya Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

		e j'anns	azian orga						
Bölge	İstasyon No	n (gözlem süresi)	Qort. (m³/s)	t	t ₃	t4	t ₅	Tüm Bölge için Di	Di
	915	19	20.6	0.2294	0.2581	0.3313	0.1925	2.45	1.33
1. Bölge	9-011	25	5.5	0.3687	0.1737	0.1243	0.0909	1.13	0.69
	9-039	18	14.8	0.4227	0.4735	0.3833	0.2075	2.35	1.40
	9-002	29	28.5	0.3853	0.4329	0.2640	0.1582	1.37	0.73
	9-042	12	3.9	0.3668	0.6109	0.4608	0.2724	2.57	1.27
	9-047	16	4.4	0.3234	0.1046	0.1013	-0.0292	0.94	0.65
	9-060	13	35.3	0.2153	0.1586	0.1880	0.1078	0.67	1.04
	9-065	15	17.8	0.3409	0.2128	0.1008	0.0095	0.79	0.88
	9-013	29	287.1	0.3241	0.0772	0.0543	0.0390	0.85	1.54
	9-056	17	94.4	0.2222	0.0194	0.0584	-0.0627	0.59	1.07
	902	39	795.5	0.2337	0.1910	0.1659	0.0472	0.63	0.82
ge	916	20	447.7	0.3014	0.2111	0.1659	0.0546	0.01	1.74
Böl	917	30	515.5	0.3311	0.1788	0.0705	0.0376	0.96	2.05
ы N	918	17	963.4	0.2347	0.0668	0.0984	0.0584	0.4	0.62
	9-067	12	147.0	0.2225	0.1656	0.1503	-0.0212	0.72	0.72
-	9-068	12	215.8	0.2549	0.1079	0.0865	0.0414	0.28	0.22
	911	9	372.1	0.2534	0.0909	0.0834	0.0246	0.28	0.21
Tü	Tüm Bölge için Ağırlıklı bölgesel								
	ortalama				0.2093	0.1651			

	Tüm		
HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	Bölge	1.Bölge	2.Bölge
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0646	0.0665	0.0441
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0481	0.0604	0.0366
Grup LCv lerinin Standart sapmasının simülasyonlarının standart			
sapması	0.0084	0.0203	0.0087
Standartlaştırılmış H(1) değerleri	1.96 *	0.3	0.86
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1259	0.1613	0.0737
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1063	0.1297	0.0838
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0161	0.0351	0.019
Standartlaştırılmış H(2) değerleri	1.22 *	0.9	-0.53
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1385	0.1838	0.0746
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1323	0.1614	0.105
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0188	0.0438	0.0216
Standartlaştırılmış H(3) değerleri	0.33	0.51	-1.41

Çizelge 4.67. Antalya Havzasının Heterojenlik Ölçüsü

Çizelge 4.68. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)

Dağılımlar	1.Bölge		2.Bölge		
GEN. LOJISTIK	L-BASIKLIK= 0.243	Z = -0.35 *	L-BASIKLIK= 0.182	Z = 2.83	
GEN. EXTR. DEĞER	L-BASIKLIK= 0.217	Z = -0.87 *	L-BASIKLIK= 0.137	Z = 1.19 *	
GEN. NORMAL	L-BASIKLIK= 0.195	Z = -1.29 *	L-BASIKLIK= 0.137	Z = 1.18 *	
PEARSON TÌP III	L-BASIKLIK= 0.158	Z = -2.02	L-BASIKLIK= 0.128	Z = 0.86 *	
GEN. PARETO	L-BASIKLIK= 0.144	Z = -2.28	L-BASIKLIK= 0.044	Z = -2.22	

C	zelge	4.69.	Dağıl	ımlara	Ait	Parametre	Tah	minler	i (%90	Kab	ıl e	edilebilir	düzev	vde)
									- (/ - /					, ,

Bölge	Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	K (şekil parametresi)		
	GEN. EXTR. DEĞER	0.679	0.393	-0.197		
ge	GEN. LOJISTIK	0.838	0.290	-0.303		
Böl	GEN. NORMAL	0.821	0.508	-0.635		
1.1		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.113	2.71	7.136	0.461	0.169
	GEN. EXTR. DEĞER	0.784	0.411	0.056		
	GEN. NORMAL	0.934	0.466	-0.277		
3ölge		MU (ortalama)	SIGMA (St.Sap.)	GAMMA (Çarpık.)		
2.E	PEARSON TÌP III	1	0.492	0.821		
		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.190	2.082	7.291	0.719	-0.286

		0				0	U /	
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	WAKEBY	у	Göz. Değer
-0.838	1.11	0.1	0.373	0.376	0.376	0.362	-1.160	0.272
-0.476	1.25	0.2	0.510	0.500	0.490	0.520	-0.706	0.415
0.37	2	0.5	0.838	0.828	0.821	0.829	-0.248	0.579
1.5	5	0.8	1.338	1.365	1.386	1.344	0.247	0.739
2.25	10	0.9	1.744	1.792	1.826	1.789	0.740	0.954
2.97	20	0.95	2.218	2.267	2.294	2.288	1.231	1.148
4.6	100	0.99	3.736	3.625	3.525	3.700	1.729	1.291
5.3	200	0.995	4.645	4.352	4.126	4.437	2.260	1.756
6.91	1000	0.999	7.651	6.474	5.710	6.519	2.697	2.237
9.21	10000	0.9999	15.505	10.956	8.501	10.675	3.662	2.698
							4.411	3.688

Çizelge 4.70. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)

Uygun dağılımların parametrelerine göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.70, 4.71). Gözlenmiş değerler ve Çizelge 4.70, 4.71 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.19, 4.20).

Çizelge 4.71. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölges	el
olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge)	

		<u> </u>						
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GEV	GNO	PE3	WAKEBY	У	Göz. Değer
-0.838	1.11	0.1	0.433	0.431	0.429	0.417	-1.190	0.313
-0.476	1.25	0.2	0.586	0.584	0.579	0.575	-0.729	0.472
0.37	2	0.5	0.933	0.934	0.933	0.926	-0.252	0.655
1.5	5	0.8	1.376	1.376	1.382	1.403	0.237	0.875
2.25	10	0.9	1.654	1.652	1.657	1.688	0.746	1.089
2.97	20	0.95	1.911	1.906	1.906	1.922	1.231	1.319
4.6	100	0.99	2.454	2.457	2.428	2.315	1.700	1.476
5.3	200	0.995	2.672	2.687	2.638	2.436	2.256	1.643
6.91	1000	0.999	3.144	3.213	3.101	2.640	2.648	1.906
9.21	10000	0.9999	3.750	3.966	3.728	2.808	3.435	1.731
							4.400	2.176

Şekil 4.19. Antalya Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)

Şekil 4.20. Antalya Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)

Antalya havzası 1.Bölge için en uygun dağılım, en küçük mutlak Z değerine sahip olan GLO, 2.bölge için ise PE3 dağılımıdır. Bu dağılımlar kullanılarak, Monte Carlo simülasyon yöntemi ile bölgeler 500 kere simüle edilmiştir(NSIM=500). Bu bölgelere ait boyutsuz bölge büyüme oranları, bu oranların ortalama hataları ve hata bantları Çizelge 4.72 ve 4.73 de verilmiştir.

T Dönüş Perivodu	F (Asilmama	q(F)	RMSE	Hata Bantları			
(Yil)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark	
1.111111	0.1	0.373	0.284	0.309	0.45	0.141	
1.25	0.2	0.51	0.167	0.449	0.576	0.127	
2	0.5	0.838	0.059	0.772	0.9	0.128	
5	0.8	1.338	0.047	1.272	1.367	0.095	
10	0.9	1.744	0.075	1.636	1.814	0.178	
20	0.95	2.218	0.105	2.007	2.413	0.406	
100	0.99	3.736	0.177	3.009	4.612	1.603	
200	0.995	4.645	0.21	3.608	6.112	2.504	
1000	0.999	7.651	0.292	5.314	11.817	6.503	
10000	0.9999	15.507	0.425	9.285	30.706	21.421	

Çizelge 4.72. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Çizelge 4.73. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3)

T Dönüş F Periyodu (Asılmama		q(F)	RMSE	Hata Bantları			
(Yil)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark	
1.111111	0.1	0.429	0.164	0.383	0.505	0.122	
1.25	0.2	0.579	0.092	0.538	0.637	0.099	
2	0.5	0.933	0.025	0.897	0.97	0.073	
5	0.8	1.382	0.034	1.335	1.41	0.075	
10	0.9	1.657	0.052	1.566	1.726	0.160	
20	0.95	1.906	0.066	1.769	2.028	0.259	
100	0.99	2.428	0.092	2.173	2.683	0.510	
200	0.995	2.638	0.101	2.334	2.95	0.616	
1000	0.999	3.101	0.118	2.682	3.558	0.876	
10000	0.9999	3.728	0.137	3.135	4.438	1.303	

Antalya havzasının 1.bölgesi için alan-q ilişkisi şekil 4.21 deki, 2. bölgesi için ise şekil 4.22 deki gibidir. Antalya havzasında alanı bilinen herhangi bir bölgenin ortalama debisi 1.bölge için (4.14) nolu formül yardımı ile, 2.bölge için ise (4.15) nolu formül yardımı ile hesaplanabilir.

$$\frac{\overline{Q}}{A} = q = 3.8258 A^{-0.7641} \Rightarrow \overline{Q} = 3.8258 A^{0.2359}$$
 (1.Bölge) (4.14)

$$\frac{\overline{Q}}{A} = q = 33.99 A^{-0.6329} \Rightarrow \overline{Q} = 33.99 A^{0.3671}$$
 (2.Bölge) (4.15)

GLO dağılımının ters fonksiyonunda, Çizelge 4.69 da verilmiş olan GLO dağılımına ait ζ , alfa ve k parametreleri ve (4.14) nolu denklemden elde edilen \overline{Q} değeri yerine yazılırsa Antalya havzasının 1.bölgesi için gelebilecek taşkının büyüklüğü aşılmama olasılığına bağlı olarak (4.16) nolu formül yardımı ile hesaplanabilir. Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri (Çizelge 4.72) ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir. 2. bölge için PE3 dağılımının ters fonksiyonu analitik olarak verilemediğinden (4.15) nolu denklemden hesaplanan debi değeri q(F) değerleri (Çizelge 4.73) ile çarpılarak taşkın debisi hesaplanabilir.

$$\frac{Q}{\overline{Q}} = -0.119 + 0.957 \left(\frac{(1-F)}{F}\right)^{-0.303}$$
(4.16)

Şekil 4.21. Antalya Havzasının Alan-q ilişkisi (1.Bölge)

Şekil 4.22. Antalya Havzasının Alan-q ilişkisi (2.Bölge)

4.10. Burdur Havzası

Burdur havzasından toplam 6 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.74 de verilmiştir.

İstasyon No	Gözlem Yapan Kurum	Gözlem Süresi (yıl)	Alan (km²)	Qort. (m ³ /s)
10-002	DSİ	27	673.2	13.9
10-007	DSİ	25	163.4	9.4
10-011	DSİ	22	90.7	9.9
10-027	DSİ	11	214.3	49.1
1001(913)	EİE	10	268	33.4
1003	EİE	20	1541.6	67.7

Çizelge 4.74. Burdur Havzasına Ait Bilgiler

Çizelge 4.75.	Burdur Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk
5	Dlçüsü

İstasyon No	n (gözlem süresi)	Qort. (m³/s)	t	t ₃	t ₄	t ₅	Di
10-002	27	13.9	0.3576	0.5398	0.3516	0.2547	1.62
10-007	25	9.4	0.4686	0.2836	0.1127	0.0507	0.96
10-011	22	9.9	0.5020	0.4403	0.2496	0.1184	0.04
10-027	11	49.1	0.5821	0.4187	0.1611	0.0583	0.80
1001(913)	10	33.4	0.3995	0.3405	0.3134	0.1533	1.43
1003	20	67.7	0.5447	0.5550	0.3738	0.2594	1.15
Ağırlıklı bölgesel ortalama			0.4670	0.4388	0.2625		

Burdur havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.75 de verilmiştir. Kritik Di değerini hiçbir istasyon aşmamaktadır.

Çizelge 4.76 daki tüm H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.77 de verilmiştir. Bu sonuçlara göre uygulanan tüm dağılımlar bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Normal dağılım en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4. 78 de görülmektedir.

Çizelge 4.76. Burdur Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ (SİMÜLASYON SAYISI=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0759
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0669
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0225
Standartlaştırılmış H(1) değerleri	0.4
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1213
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1176
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0364
Standartlaştırılmış H(2) değerleri	0.1
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1285
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1521
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0486
Standartlaştırılmış H(3) değerleri	-0.49

GEN. LOJISTIC	L-BASIKLIK= 0.327	Z = 0.57 *
GEN. EKS.DEĞ.	L-BASIKLIK= 0.313	Z = 0.35 *
GEN. NORMAL	L-BASIKLIK= 0.276	Z = -0.24 *
PEARSON TÌP III	L-BASIKLIK= 0.212	Z = -1.26 *
GEN. PARETO	L-BASIKLIK= 0.258	Z = -0.53 *

Çizelge 4.77. Uygunluk Testi Sonuçları

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.79). Gözlenmiş değerler ve Çizelge 4.79 da verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.23).

3 0 0				-	2
	ζ (yer	ALFA (ölçek	K (şekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
GEN. LOJİSTİK	0.694	0.333	-0.439		
GEN. EKS. DEĞER	0.523	0.407	-0.380		
GEN. NORMAL	0.661	0.570	-0.943		
GEN. PARETO	0.169	0.649	-0.220		
	MU	SIGMA	GAMMA		
	(ortalama)	(St.Sap.)	(Çarpık.)		
PEARSON TIP III	1.000	1.014	2.659		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.000	27.076	154.916	0.639	0.226

Çizelge 4.78. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Çizelge 4.79. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	PE3	GPA	Wakeby	У	Göz. Değer
-0.838	1.111	0.1	0.225	0.231	0.237	0.256	0.238	0.243	-1.168	0.122
-0.476	1.25	0.2	0.348	0.345	0.33	0.303	0.317	0.321	-0.717	0.275
0.37	2	0.5	0.694	0.683	0.661	0.621	0.654	0.655	-0.226	0.420
1.5	5	0.8	1.328	1.347	1.394	1.494	1.421	1.416	0.256	0.599
2.25	10	0.9	1.923	1.972	2.081	2.247	2.113	2.107	0.747	0.963
2.97	20	0.95	2.694	2.766	2.909	3.04	2.918	2.915	1.238	1.344
4.6	100	0.99	5.628	5.61	5.481	4.969	5.338	5.36	1.723	1.649
5.3	200	0.995	7.668	7.474	6.919	5.823	6.675	6.721	2.171	1.982
6.91	1000	0.999	15.631	14.254	11.204	7.839	10.691	10.84	2.820	2.371
9.21	10000	0.9999	43.062	34.973	20.228	10.774	19.571	20.068	3.923	3.761

Şekil 4.23. Burdur Havzasına Ait Taşkın Frekans Eğrileri

Daha öncede belirtildiği gibi Burdur havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan GNO dağılımdır. Bu dağılım kullanılarak, Monte Carlo simülasyon yöntemi ile bölge 500 kere simüle edilmiştir(NSIM=500). Bu simülasyondan elde edilen sonuçlar Çizelge 4.80 de verilmiştir.

T Dönüs	F	q(F)	RMSF		Hata Bantlar	
Periyodu (Yıl)	(Aşılmama Olasılığı)	(Büyüme Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.1111111	0.1	0.237	0.865	0.117	0.239	0.122
1.25	0.2	0.33	0.391	0.224	0.381	0.157
2	0.5	0.661	0.142	0.535	0.762	0.227
5	0.8	1.394	0.052	1.313	1.466	0.153
10	0.9	2.081	0.073	1.993	2.24	0.247
20	0.95	2.909	0.113	2.665	3.429	0.764
100	0.99	5.48	0.201	4.456	7.829	3.373
200	0.995	6.919	0.236	5.395	10.645	5.25
1000	0.999	11.204	0.311	8.061	20.188	12.127
10000	0.9999	20.228	0.416	13.008	44.456	31.448

Cizelge 4.80. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)

Burdur havzası için Kot-Ortalama debi ilişkisi Şekil 4.24 deki gibidir. Burdur havzası için, kotu bilinen herhangi bir bölgenin ortalama debisi (4.17) nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 1\mathbf{E} + 18\mathbf{K}^{-5.5979} \tag{4.17}$$

Burdur havzasına en uygun dağılım GNO dağılımıdır. GNO dağılımının ters fonksiyonu analitik olarak tanımlanamadığından ortalama debi (4.17) nolu denklem yardımı ile hesaplandıktan sonra GNO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

Şekil 4.24. Burdur Havzasının Kot-Qort ilişkisi

Burdur havzasının Kot-Qort ilişkisi için yapılan regresyon analizi sonuçları Çizelge 4.81 de verilmiştir.

Regresyon	İstatistikleri				
Çoklu R	0.78428968				
R Kare	0.6151103				
Ayarlı R Kare	0.51888788				
Standart Hata	0.59340243				
Gözlem	6				
	df	SS	MS	F	Anlamlılık F
Regresyon	1	2.25099921	2.25099921	6.39258784	0.0647778
Fark	4	1.40850576	0.35212644		
Toplam	5	3.65950497			
	Katsayılar	Standart Hata	t Stat	P-değeri	
Kesişim	41.6078236	15.2205807	2.73365547	0.05224576	
X Değişkeni 1	-5.5978962	2.21404523	-2.52835675	0.06477781	

Çizelge 4.81. Regresyon analizi sonuçları

4.11. Akarçay Havzası

Akarçay havzasından toplam 11 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.82 de verilmiştir.

Akarçay havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.83 de verilmiştir. Çizelge 3.1 deki kritik Di değerini aşan istasyon bulunmamaktadır.

3	çızerge mezerina şaj marzasına mezinde							
İstasyon	Gözlem Yapan	Gözlem	Alon (km^2)	Qort.				
INU	Kurum	Sulesi (yii)	Alan (Kill)	(1175)				
11-001	DSİ	17	5288.4	9.6				
11-002	DSİ	37	631.9	21.7				
11-007	DSİ	21	338.1	28.9				
11-012	DSİ	22	742	8.3				
11-013	DSİ	24	690	40.5				
11-015	DSİ	20	46.8	7.9				
11-019	DSİ	19	310.4	5.1				
1102	EİEİ	27	360.8	14.5				
1103	EİEİ	17	818.4	47.5				
1104	EİEİ	24	4231.6	44.9				
1107	EİEİ	26	1596	37.0				

Çizelge 4.82. Akarçay Havzasına Ait Bilgiler

Çizelge	4.83.	Akarçay	Havzasındaki	İstasyonların	L-moment	Oranları	ve
		Uyumsuz	luk Ölçüsü	-			

İstasyon No	n (gözlem süresi)	Qort. (m ³ /s)	t	t ₃	t ₄	t ₅	Di
11-001	17	9.6	0.4962	0.4367	0.3047	0.2024	1.22
11-002	37	21.7	0.3046	0.2895	0.2625	0.1584	0.45
11-007	21	28.9	0.3791	0.3041	0.0273	-0.0551	1.43
11-012	22	8.3	0.4965	0.3129	0.1171	0.0186	1.57
11-013	24	40.5	0.3969	0.5287	0.5245	0.4075	1.02
11-015	20	7.9	0.2971	0.2330	0.1220	0.0135	0.50
11-019	19	5.1	0.4156	0.7658	0.6652	0.4852	2.10
1102	27	14.5	0.4130	0.4191	0.2139	0.0920	0.35
1103	17	47.5	0.3591	0.4920	0.3015	0.1323	0.86
1104	24	44.9	0.2676	0.2092	0.1921	0.0725	0.86
1107	26	37.0	0.2929	0.2362	0.2169	0.0388	0.65
Ağırlıklı bölgesel ortalama		0.3671	0.3707	0.2632			

Çizelge 4.84. Akarçay Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0743
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0632
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0176
Standartlaştırılmış H(1) değerleri	0.63
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1485
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1223
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0281
Standartlaştırılmış H(2) değerleri	0.93
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1846
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.153
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0353
Standartlaştırılmış H(3) değerleri	0.89

Çizelge 4.84 deki tüm H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.85 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Lojistik dağılım en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4.86 de görülmektedir.

Çizelge 4.85. Uygunluk Testi Sonuçları

3		
GEN. LOJISTIK	L-BASIKLIK= 0.281	Z = -0.27 *
GEN. EKS. DEĞER	L-BASIKLIK= 0.261	Z = -0.75 *
GEN. NORMAL	L-BASIKLIK= 0.231	Z = -1.46 *
PEARSON TIP III	L-BASIKLIK= 0.180	Z = -2.67
GEN. PARETO	L-BASIKLIK= 0.197	Z = -2.27

Çizelge 4.86. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

	۲ (ver	ALFA (ölcek	K (sekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
GLO	0.791	0.29	-0.371		
GEV	0.637	0.373	-0.29		
GNO	0.769	0.503	-0.785		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.023	6.752	18.542	0.506	0.198

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.87). Gözlenmiş değerler ve Çizelge 4.87 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.25).

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	Wakeby	у	Göz. Değer
-0.838	1.1111111	0.1	0.356	0.361	0.363	0.390	-1.220	0.252
-0.476	1.25	0.2	0.477	0.471	0.459	0.497	-0.737	0.414
0.37	2	0.5	0.791	0.781	0.769	0.764	-0.244	0.552
1.5	5	0.8	1.316	1.337	1.369	1.347	0.247	0.731
2.25	10	0.9	1.774	1.820	1.880	1.864	0.741	0.896
2.97	20	0.95	2.337	2.394	2.458	2.458	1.129	1.173
4.6	100	0.99	4.300	4.233	4.106	4.194	1.711	1.485
5.3	200	0.995	5.567	5.325	4.966	5.130	2.243	1.913
6.91	1000	0.999	10.117	8.888	7.372	7.870	2.785	2.052
9.21	10000	0.9999	23.747	17.959	11.994	13.668	3.756	4.252
							4.191	3.162
							4.656	3.228

Çizelge 4.87. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.25. Akarçay Havzasına Ait Taşkın Frekans Eğrileri

Akarçay havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan Genelleştirilmiş Lojistik dağılımıdır. Bu dağılım kullanılarak, Monte Carlo simülasyon yöntemi ile bölge 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.88 de verilmiştir. Akarçay havzası için alan-debi ilişkisi Şekil 4.26 daki gibidir. Akarçay havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.18) nolu formül yardımı ile hesaplanabilir.

Çızeige 4.88. Bolgesel Buyune Egrisinin Doğruluk Ölçuleri (GLO)							
T Dönüş Periyodu	F (Aşılmama Olasılığı)	q(F) (Büyüme Eărisi)	RMSE (Ort. Hata)	Hata Bantları		rı	
(11)	Clashigi)	Lgh3i)		95%	5%	Fark	
1.111111	0.1	0.356	0.340	0.283	0.362	0.079	
1.25	0.2	0.477	0.196	0.408	0.493	0.085	
2	0.5	0.791	0.069	0.717	0.813	0.096	
5	0.8	1.316	0.043	1.264	1.331	0.067	
10	0.9	1.774	0.070	1.716	1.832	0.116	
20	0.95	2.337	0.098	2.236	2.538	0.302	
100	0.99	4.300	0.161	3.939	5.375	1.436	
200	0.995	5.568	0.188	5.016	7.448	2.432	
1000	0.999	10.118	0.250	8.760	15.892	7.132	
10000	0.9999	23.751	0.336	19.310	48.226	28.916	

Çizelge 4.88. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

$$\frac{Q}{A} = q = 1.563 A^{-0.581} \Rightarrow \overline{Q} = 1.563 A^{0.419}$$
(4.18)

Akarçay havzasına en uygun dağılım olan GLO dağılımının ters fonksiyonunda Çizelge 4.86 da verilen parametreler yerine yazılırsa (4.19) nolu denklem elde edilir. Alanı bilinen bir bölgenin ortalama debisi (4.18) nolu denklem ile hesaplandıktan sonra (4.19) nolu denklem yardımı ile taşkın debisi hesaplanabilir.

$$\frac{Q}{\overline{Q}} = 0.009 + 0.7816 \left(\frac{(1-F)}{F}\right)^{-0.371}$$
(4.19)

Şekil 4.26. Akarçay Havzasının Alan-q ilişkisi

4.12. Sakarya Havzası

Sakarya havzasından toplam 27 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.89 da verilmiştir.

Sakarya havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.90 da verilmiştir. 12-093 nolu istasyon Çizelge 3.1 deki kritik Di değerini aşmaktadır. Yani bu istasyon diğerleri ile uyumsuz data içermektedir.

	Gözlem	Gözlem		
İstasyon	Yapan	Süresi	Alan	Qort.
Nó	Kurum	(yil)	(km ²)	(m ³ /s)
12-030	DSİ	19	384.2	45.95
12-034	DSİ	28	4655	30.3
12-043	DSİ	18	2537	22.69
12-054	DSİ	27	5169	46.13
12-058	DSİ	21	1096.6	35.15
12-063	DSİ	26	290.7	14.24
12-067	DSİ	26	156.7	13.67
12-093	DSİ	23	153.1	13.04
12-124	DSİ	17	305.6	5.84
1202	EİEİ	25	26172.4	74.26
1203	EİEİ	50	3938.4	44.61
1206	EİEİ	33	46756.8	521.03
1212	EİEİ	35	10822	38.77
1219	EİEİ	34	410.8	103.12
1222	EİEİ	47	2021.6	155.1
1223	EİEİ	37	1608.4	23.77
1224	EİEİ	28	4298	27.51
1226	EİEİ	27	7140	101.89
1233	EİEİ	36	1984.8	252.06
1235	EİEİ	19	251.2	12.52
1237	EİEİ	36	1072.4	76.63
1239	EİEİ	34	322	60.74
1242	EİEİ	39	33847.2	163.94
1244	EİEİ	24	886	121.34
1245	EİEİ	27	3941.6	315.5
1248	EIEI	18	6340	30.68
1249	EİEİ	18	1180	51.44

Çizelge 4.89. Sakarya Havzasına Ait Bilgiler

Çizelge 4.91 deki H_1 değerine göre bölge kabul edilebilir derecede homojendir, H_2 değerine göre kesinlikle heterojendir, H_3 değerine göre ise muhtemelen heterojendir. Hosking ve Wallis (1993), H_1 'in homojen ve heterojen bölgelerin ayrımında daha güçlü olduğunu öne sürmüşlerdir. Bundan dolayı V_1 'e dayalı H₁ istatistiği, heterojenlik ölçüsünü hesaplamada tavsiye edilmektedir. Buna dayanarak bölge homojen kabul edilip çalışmaya devam edilmiştir. Bölge homojen çıktığından dolayı da 12-093 nolu istasyon çalışmadan çıkarılmamıştır.

		-	3				
İstasvon	n (gözlem	Oort					
No	süresi)	(m^3/s)	t	t ₃	t ₄	t ₅	Di
12-030	19	45.9	0.3888	0.4485	0.2974	0.1541	0.60
12-034	28	30.2	0.3336	0.2999	0.2048	0.1422	0.07
12-043	18	22.6	0.3748	0.2070	0.1013	0.0201	0.61
12-054	27	46.1	0.4134	0.5171	0.3792	0.2570	1.26
12-058	21	35.1	0.3793	0.3741	0.2616	0.0971	0.25
12-063	26	14.4	0.4058	0.1575	0.0230	0.0438	2.10
12-067	26	13.6	0.4078	0.4728	0.4058	0.2315	1.64
12-093	23	13.0	0.3404	0.5536	0.5101	0.3370	3.06 *
12-124	17	5.8	0.3831	0.2020	0.2286	0.1416	2.61
1202	25	74.2	0.2642	0.0811	0.0673	0.0920	0.91
1203	50	44.6	0.3878	0.3508	0.2193	0.1172	0.27
1206	33	521.0	0.2796	0.1648	0.1793	0.1038	0.65
1212	35	38.7	0.2653	0.0879	0.0537	0.0082	0.94
1219	34	103.1	0.3146	0.2389	0.0676	0.0442	1.26
1222	47	155.1	0.2898	0.1323	0.1096	0.0480	0.45
1223	37	23.7	0.3200	0.3096	0.2089	0.1712	0.29
1224	28	27.5	0.2874	0.2820	0.2705	0.1529	0.77
1226	27	101.8	0.3538	0.1372	0.0099	0.0227	1.03
1233	36	252.1	0.3188	0.2644	0.1313	0.0514	0.50
1235	19	12.5	0.2555	0.1264	0.2087	0.1442	1.64
1237	36	76.6	0.4058	0.4020	0.1646	0.0371	1.28
1239	34	60.7	0.3612	0.3049	0.1710	0.1557	0.13
1242	39	163.9	0.2970	0.3164	0.1650	0.0386	1.53
1244	24	121.3	0.4245	0.4062	0.1769	0.0379	1.28
1245	27	315.5	0.3311	0.2700	0.1718	0.0648	0.06
1248	18	30.6	0.2747	0.0978	0.1236	0.0431	0.87
1249	18	51.4	0.3647	0.2031	0.1802	0.1297	0.95
Ağırlıklı	bölgesel o	rtalama	0.3391	0.2747	0.1819		

Çizelge 4.90. Sakarya Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.92 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Ekstrem Değer ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Normal dağılım en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4.93 de görülmektedir

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)				
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0506			
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0449			
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0064			
Standartlaştırılmış H(1) değerleri	0.90			
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1154			
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.0917			
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0114			
Standartlaştırılmış H(2) değerleri	2.08 **			
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1367			
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1138			
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0138			
Standartlaştırılmış H(3) değerleri	1.66 *			

Çizelge 4.91. Sakarya Havzasının Heterojenlik Ölçüsü

Cherge 1.72. O'gennak i obti bonaçıan	Cizelge 4.92.	Uygunluk	Testi Sonue	cları
---------------------------------------	---------------	----------	-------------	-------

, , , , , , , , , , , , , , , , , , , ,	, C ,	
GEN. LOJISTIC	L-BASIKLIK= 0.230	Z = 2.35
GEN. EKS DEĞ.	L-BASIKLIK= 0.200	Z = 0.66 *
GEN. NORMAL	L-BASIKLIK= 0.182	Z = -0.37 *
PEARSON TÌP III	L-BASIKLIK= 0.150	Z = -2.18
GEN. PARETO	L-BASIKLIK= 0.124	Z = -3.69

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.94). Gözlenmiş değerler ve Çizelge 4.94 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.27).

Çizelge 4.93. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	K (şekil parametresi)		
GEN. EKS. DEĞER	0.686	0.414	-0.157		
GEN. NORMAL	0.837	0.524	-0.572		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.185	1.21	4.37	0.555	0.059

4.BULGULAR VE TARTIŞMA

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GEV	GNO	Wakeby	у	Göz. Değer
-0.838	1.11	0.1	0.362	0.361	0.346	-1.223	0.255
-0.476	1.25	0.2	0.496	0.487	0.482	-0.732	0.409
0.37	2	0.5	0.842	0.837	0.841	-0.252	0.569
1.5	5	0.8	1.386	1.404	1.399	0.237	0.771
2.25	10	0.9	1.803	1.828	1.83	0.732	1.003
2.97	20	0.95	2.251	2.269	2.28	1.223	1.271
4.6	100	0.99	3.476	3.39	3.397	1.730	1.517
5.3	200	0.995	4.101	3.922	3.911	2.230	1.781
6.91	1000	0.999	5.841	5.292	5.189	2.743	2.109
9.21	10000	0.9999	9.23	7.619	7.239	3.463	2.369
						4.283	3.245
						4.676	3.075

Çizelge 4.94. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.27. Sakarya Havzasına Ait Taşkın Frekans Eğrileri

Sakarya havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan Genelleştirilmiş Normal dağılımdır. Bu dağılım kullanılarak, Monte Carlo simülasyon yöntemi ile bölge 500 kere simüle edilmiştir(NSIM=500). Simülasyon sonuçları Çizelge 4.95 de verilmiştir.

Çizelge 4.95. Dolgesel Duyune Egrisinin Doğruluk Ölçüleri (Gito)									
T Dönüş Periyodu	F (Aşılmama Olaşılığı)	q(F) (Büyüme Eğrisi)	RMSE (Ort. Hata)	Hata Bantları					
(11)	Olasiliyi)			95%	5%	Fark			
1.111111	0.1	0.361	0.248	0.306	0.378	0.072			
1.25	0.2	0.487	0.143	0.441	0.509	0.068			
2	0.5	0.837	0.036	0.799	0.864	0.065			
5	0.8	1.404	0.037	1.376	1.424	0.048			
10	0.9	1.828	0.060	1.769	1.892	0.123			
20	0.95	2.269	0.078	2.157	2.405	0.248			
100	0.99	3.390	0.111	3.100	3.779	0.679			
200	0.995	3.922	0.123	3.523	4.467	0.944			
1000	0.999	5.292	0.147	4.589	6.310	1.721			
10000	0.9999	7.619	0.178	6.336	9.660	3.324			

Çizelge 4.95. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GNO)

Sakarya havzası için alan-q ilişkisi Şekil 4.28 deki gibidir. Sakarya havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.20) nolu formül yardımı ile hesaplanabilir.

$$\frac{Q}{A} = q = 2.92 A^{-0.6223} \Rightarrow \overline{Q} = 2.92 A^{0.3775}$$
 (4.20)

Sakarya havzasına uyan GNO dağılımının analitik olarak ters formu tanımlanamadığından taşkın debisi Çizelge 4.95 de verilen q(F) büyüme eğrisi yardımı ile hesaplanır.

Şekil 4.28. Sakarya Havzasının Alan-q ilişkisi

Sakarya havzasının Alan-q ilişkisi için yapılan regresyon analizi sonuçları Çizelge 4.96 da verilmiştir.

	Çızeige 4.90. Regresyoli analızı soluçları									
Regresyon										
Çoklu R	0.750812									
R Kare	0.563719									
Ayarlı R Kare	0.546268									
Standart Hata	0.905031									
Gözlem	27									
	df	SS	MS	F	Anlamlılık F					
Regresyon	1	26.4584	26.4584	32.30251	6.43E-06					
Fark	25	20.47704	0.819082							
Toplam	26	46.93544								
	Katsayılar	Standart Hata	t Stat	P-değeri						
Kesişim	1.0716	0.842284	1.272255	0.214989	_					
X Değişkeni 1	-0.62232	0.109495	-5.68353	6.43E-06						

Çizelge 4.96. Regresyon analizi sonuçları

4.13. Batı Karadeniz Havzası

Batı Karadeniz havzasından toplam 20 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.97 de verilmiştir.

Batı Karadeniz havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.98 de verilmiştir. 12-031 nolu istasyon Çizelge 3.1 deki kritik Di değerini aşmaktadır. Yani bu istasyon diğerleri ile uyumsuz data içermektedir.

Çizelge 4.99 daki H_1 ve H_3 değerine göre bölge kabul edilebilir derecede homojendir, H_2 değerine göre ise muhtemelen heterojendir. Bölge homojen çıktığından dolayı da 13-031 nolu istasyon çalışmadan çıkarılmamıştır.

Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.100 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Ekstrem Değer dağılımı en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4.101 de görülmektedir.

<u> </u>				0
	Gözlem	Gözlem		
İstasyon	Yapan	Süresi	Alan	Qort.
No	Kurum	(yıl)	(km ²)	(m ³ /s)
13-014	DSİ	25	890	273.4
13-015	DSİ	20	729	78.7
13-019	DSİ	23	49.8	9.2
13-022	DSİ	28	76.5	6.5
13-037	DSİ	27	537.1	58.8
13-040	DSİ	23	1262	109.8
1307	EİEİ	37	1097.6	113.2
1314	EİEİ	37	5086.8	315.2
1319	EİEİ	35	766.4	81.2
1327	EİEİ	32	953.6	126.4
1330	EİEİ	33	23.1	11.9
1331	EİEİ	30	1342	483.0
1333	EİEİ	34	2833.2	219.8
1334	EİEİ	30	1102.8	68.8
1335	EİEİ	35	13300.4	1057.9
13-039	DSİ	19	332	120.0
13-041	DSİ	14	8310	597.0
13-044	DSİ	16	2640	246.5
1336	EİEİ	20	8613.6	626.8
13-031	DSI	15	507.5	114.8

Çizelge 4.97. Batı Karadeniz Havzasına Ait Bilgiler

Çizelge 4.98. Batı Karadeniz Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

İstasyon	n (gözlem	Qort					
No	süresi)	(m^{3}/s)	t	t ₃	t ₄	t ₅	Di
13-014	25	273.4	0.3472	0.2998	0.2219	0.1762	0.10
13-015	20	78.7	0.3968	0.3201	0.2489	0.1367	1.33
13-019	23	9.2	0.3642	0.3395	0.1963	0.0150	0.24
13-022	28	6.5	0.4022	0.3014	0.1575	0.1315	1.19
13-037	27	58.8	0.3492	0.3249	0.2018	0.1467	0.09
13-040	23	109.8	0.3294	0.2396	0.1971	0.1398	0.22
1307	37	113.2	0.2499	0.1013	0.0928	0.0137	0.96
1314	37	315.2	0.2969	0.2138	0.1129	0.0137	0.67
1319	35	81.2	0.4136	0.4063	0.2374	0.1347	0.81
1327	32	126.4	0.2454	0.0300	0.0309	0.0252	1.70
1330	33	11.9	0.3080	0.1547	0.1168	0.0445	0.50
1331	30	483.0	0.3245	0.3575	0.2145	0.0529	0.58
1333	34	219.8	0.3351	0.4180	0.2192	0.1157	1.59
1334	30	68.8	0.2707	0.4032	0.3437	0.2500	2.86
1335	35	1057.9	0.3126	0.2999	0.2035	0.1154	0.18
13-039	19	120.0	0.3881	0.4189	0.3099	0.2081	0.77
13-041	14	597.0	0.3933	0.3706	0.2234	0.1099	0.47
13-044	16	246.5	0.3550	0.4446	0.3859	0.2292	1.98
1336	20	626.8	0.3209	0.2954	0.1673	0.0764	0.39
13-031	15	114.8	0.2188	0.0227	0.1743	0.0350	3.37 *
Ağırlıklı bölgesel ortalama		0.3273	0.2822	0.1926			

Çizelge 4.99. Batı Karadeniz Havzasının Heterojenlik Ölçüsü

HETEROJENLİK OLÇUSU (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0527
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0461
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0076
Standartlaştırılmış H(1) değerleri	0.86
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1118
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.0974
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.014
Standartlaştırılmış H(2) değerleri	1.03 *
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1206
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1215
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0168
Standartlaştırılmış H(3) değerleri	-0.05

Çizelge 4.100. Uygunluk Testi Sonuçları

GEN. LOJISTIK	L-BASIKLIK= 0.233	Z = 1.36 *
GEN. EKS. DEĞER	L-BASIKLIK= 0.204	Z = 0.11 *
GEN. NORMAL	L-BASIKLIK= 0.185	Z = -0.72 *
PEARSON TYPE III	L-BASIKLIK= 0.152	Z = -2.16
GEN. PARETO	L-BASIKLIK= 0.129	Z = -3.16

Çizelge 4.101. Dağılımla	ira Ait Param	etre Tahminle	eri (%90 Kabu	l edilebilir	düzeyde)

	ζ (yer	ALFA (ölçek	K (şekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
GEN. LOJISTIK	0.854	0.286	-0.282		
GEN. EKS. DEĞER	0.695	0.394	-0.167		
GEN. NORMAL	0.839	0.502	-0.589		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.194	1.583	5.944	0.541	0.064

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) hesaplandı (Çizelge 4.102). Gözlenmiş değerler ve Çizelge 4.102 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.29).

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	Wakeby	у	Göz. Değer
-0.838	1.11111	0.1	0.386	0.388	0.387	0.375	-1.224	0.282
-0.476	1.25	0.2	0.526	0.515	0.506	0.511	-0.722	0.443
0.37	2	0.5	0.854	0.844	0.839	0.839	-0.240	0.587
1.5	5	0.8	1.339	1.367	1.385	1.377	0.239	0.779
2.25	10	0.9	1.725	1.772	1.799	1.803	0.738	1.007
2.97	20	0.95	2.167	2.212	2.231	2.247	1.232	1.237
4.6	100	0.99	3.548	3.427	3.340	3.358	1.714	1.458
5.3	200	0.995	4.355	4.055	3.870	3.873	2.208	1.763
6.91	1000	0.999	6.958	5.826	5.244	5.161	2.688	2.051
9.21	10000	0.9999	13.476	9.348	7.600	7.251	3.355	2.488
							4.255	3.098
							4.591	2.710

Çizelge 4.102. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.29. Batı Karadeniz Havzasına Ait Taşkın Frekans Eğrileri

	0		0	- 0	- 3	- (
T Dönüş Periyodu	F (Aşılmama	q(F) (Büyüme	RMSE (Ort.	Hata Bantları			
(Yil)	Olasılığı)	Eğrisi)	Hata)	95%	5%	Fark	
1.111111	0.1	0.388	0.278	0.312	0.418	0.106	
1.25	0.2	0.515	0.162	0.450	0.553	0.103	
2	0.5	0.844	0.050	0.792	0.896	0.104	
5	0.8	1.367	0.045	1.324	1.405	0.081	
10	0.9	1.772	0.072	1.701	1.865	0.164	
20	0.95	2.212	0.100	2.046	2.419	0.373	
100	0.99	3.427	0.166	2.844	4.142	1.298	
200	0.995	4.056	0.197	3.200	5.150	1.950	
1000	0.999	5.826	0.276	4.074	8.383	4.309	
10000	0.9999	9.349	0.416	5.436	16.120	10.684	

							••	
-	N I I	100	D ··· 1 1	D	T U · · · ·	\mathbf{D} \mathbf{V} 1 1	O1 11 1	
	170000/	1112	Palaaaal	Dinmo	Langunn		(Monilors ($I \rightarrow L^{\prime} \times I \rightarrow$
ι.		1177	DOTORSET	БПУШИе	EVENINE		(<i>nemen</i> i	
~			DUIGODUI	Duyume		DUCIULUM	Olçulori (\mathbf{U}
			()			6	· · ·	

Batı Karadeniz havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan Genelleştirilmiş Ekstrem Değer dağılımıdır. Bu dağılımın simülasyon sonuçları Çizelge 4.103 de verilmiştir. Batı Karadeniz havzası için alan-ortalama debi ilişkisi Şekil 4.30 daki gibidir. Batı Karadeniz havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.21) nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 0.07 \mathrm{A} + 59.462$$
 (4.21)

Batı Karadeniz havzasına uyan GEV dağılımının ters formunda Çizelge 4.101 deki parametreler yerine yazılırsa (4.22) nolu formül elde edilir. Bu formül yardımı ile belirli bir dönüş aralığına sahip gelebilecek taşkının büyüklüğü hesaplanabilir.

$$\frac{Q}{\overline{Q}} = -1.664 + 2.359(-\log F)^{-0.167}$$
(4.22)

Şekil 4.30. Batı Karadeniz Havzasının Alan-Qort ilişkisi

4.14. Yeşilırmak Havzası

Yeşilırmak havzasından toplam 25 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.104 de verilmiştir.

Yeşilırmak havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.105 de verilmiştir. Bölge bütün olarak değerlendirildiğinde kritik Di değerine göre 14-013 nolu istasyon uyumsuz olarak değerlendirilmiştir. Heterojenlik testine göre havza heterojen çıkmıştır. Bundan dolayı havza iki alt bölgeye ayrılmış ve Çizelge 4.105 den de görüldüğü gibi 1.bölge de yer alan 14-013 nolu istasyon yine uyumsuz çıkmıştır fakat bölge heterojenlik testinde homojen çıktığından dolayı bu istasyon çalışmaya dahil edilmiştir. 2.bölgede uyumsuz istasyona rastlanmamış ve bu bölgede homojen çıkmıştır (Çizelge 4.106).

	Gözlem	Gözlem		
İstasyon	Yapan	Süresi		Qort.
No	Kurum	(yıl)	Alan (km ²)	(m ³ /s)
1401	EİEİ	52	10048.8	530.9
1418	EİEİ	36	1608	167.1
1422	EİEİ	21	1714	81.3
14-018	DSİ	15	105.2	8.4
1427	EİEİ	10	8572.8	399.1
14-015	DSİ	23	725.5	52.4
14-013	DSİ	11	1199.6	119.9
14-083	DSİ	17	179.8	8.8
1402	EİEİ	57	33904	763.9
1408	EİEİ	28	36300	913.0
1413	EİEİ	45	21667.2	331.5
1414	EİEİ	44	5409.2	129.6
1424	EİEİ	31	1817.2	34.1
14-019	DSİ	18	60.4	19.9
14-020	DSİ	23	102.4	16.2
14-024	DSİ	20	341.4	21.1
14-026	DSİ	24	420.4	28.8
14-047	DSİ	18	2587.6	84.0
14-050	DSİ	21	150.4	6.7
14-080	DSİ	21	338.6	9.6
14-081	DSİ	17	10.1	8.5
14-092	DSİ	19	477.7	21.0
14-093	DSİ	21	138	23.7
1409	EİEİ	31	5267.6	144.5
1426	EİEİ	21	1817.2	45.9

Cizelge 4.104.	Yeşilırmak	Havzasına	Ait Bilgiler
3			

Bölge	İstasyon No	n (gözlem süresi)	Qort. (m ³ /s)	t	t ₃	t ₄	t ₅	Tüm Bölge için Di	Di
	1401	52	530.9	0.1621	0.0205	0.1579	0.0422	1.20	1.22
	1418	36	167.1	0.1810	0.0776	0.1016	0.0175	1.00	0.93
	1422	21	81.3	0.2624	0.2432	0.1629	0.0553	0.77	0.87
	14-018	15	8.4	0.1837	0.1212	0.2445	0.1356	0.81	0.53
	1427	10	399.1	0.2319	0.0062	0.1548	0.0089	2.30	1.53
g	14-015	23	52.4	0.2218	0.1783	0.2030	0.0888	0.29	0.04
3ölç	14-013	11	119.9	0.2418	0.3752	0.4858	0.2242	3.65 *	3.29 *
1.	14-083	17	8.8	0.2942	0.1198	0.0687	0.0168	0.60	0.33
	1402	57	763.9	0.1900	0.1605	0.2142	0.0981	2.71	1.72
	1408	28	913.0	0.2079	0.2881	0.2124	0.0577	0.24	0.38
	1413	45	331.5	0.2550	0.1229	0.1519	0.0814	0.48	0.17
	1414	44	129.6	0.2154	0.1254	0.2178	0.0294	0.63	1.64
	1424	31	34.1	0.2538	0.1506	0.1273	0.1082	0.25	0.36
	14-019	18	19.9	0.4203	0.3956	0.3270	0.2127	1.74	1.30
	14-020	23	16.2	0.3706	0.3276	0.1541	0.0771	0.94	1.02
	14-024	20	21.1	0.3884	0.3254	0.1403	-0.0037	1.02	0.94
	14-026	24	28.8	0.3955	0.3297	0.2029	0.0847	0.61	0.21
	14-047	18	84.0	0.2784	0.0932	0.0866	-0.0018	0.62	1.60
<u>ilg</u>	14-050	21	6.7	0.4084	0.4072	0.3426	0.2804	1.68	1.26
B	14-080	21	9.6	0.3022	0.2857	0.2008	0.1224	0.38	1.37
	14-081	17	8.5	0.3719	0.2533	0.1698	0.1013	0.44	0.18
	14-092	19	21.0	0.3540	0.1676	0.0911	0.0671	0.81	0.93
	14-093	21	23.7	0.4086	0.2492	0.0836	0.0581	1.24	1.22
	1409	31	144.5	0.2814	0.2437	0.2411	0.1161	0.11	1.30
	1426	21	45.9	0.3346	0.2403	0.2371	0.1009	0.46	0.66
Tüm Bölge için Ağırlıklı bölgesel ortalama		0.2708	0.1936	0.1850					

Çizelge 4.105. Yeşilırmak Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.107 de verilmiştir. Bu sonuçlara göre, 1.bölgeye Genelleştirilmiş Lojistik dağılım, 2.bölgeye ise Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal ve Pearson Tip 3 dağılımları uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.108 de verilmiştir.

	Tüm		
HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	Bölge	1.Bölge	2.Bölge
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0811	0.0366	0.049
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0414	0.0304	0.0534
Grup LCv lerinin Standart sapmasının simülasyonlarının			
standart sapması	0.0061	0.0068	0.0116
Standartlaştırılmış H(1) değerleri	6.54 **	0.91	-0.38
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1201	0.0726	0.0838
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.0989	0.086	0.1096
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0132	0.0172	0.0217
Standartlaştırılmış H(2) değerleri	1.60 *	-0.78	-1.19
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1128	0.0849	0.0961
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1215	0.1071	0.135
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0154	0.019	0.0272
Standartlaştırılmış H(3) değerleri	-0.56	-1.17	-1.43

Çizelge 4.106. Yeşilırmak Havzasının Heterojenlik Ölçüsü

Çizelge 4. 107. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)

Dağılımlar	1.Bölge		2.Bölge		
GEN. LOJISTIK	L-BASIKLIK= 0.183	Z = -0.08 *	L-BASIKLIK= 0.231	Z = 0.86 *	
GEN. EXTR. DEĞER	L-BASIKLIK= 0.138	Z = -1.95	L-BASIKLIK= 0.202	Z = -0.03 *	
GEN. NORMAL	L-BASIKLIK= 0.138	Z = -1.98	L-BASIKLIK= 0.183	Z = -0.60 *	
PEARSON TIP III	L-BASIKLIK= 0.129	Z = -2.37	L-BASIKLIK= 0.151	Z = -1.59 *	
GEN. PARETO	L-BASIKLIK= 0.046	Z = -5.86	L-BASIKLIK= 0.126	Z = -2.35	

Çize	elge 4.108. Dağılımlara	a Ait Paramet	re Tahminler	i (%90 Kabu	l edilebilir dü	izeyde)

Bölge	ζ (yer ALFA (ö Dağılımlar parametresi) paramet		ALFA (ölçek parametresi)	K (şekil parametresi)		
	GEN. LOJISTIK	0.952	0.208	-0.139		
lge		ζ	ALFA	BETA	GAMMA	DELTA
Bö						
<u>-</u>	WAKEBY	0.291	2.565	5.766	0.325	0.013
	GEN. LOJISTIK	0.843	0.313	-0.278		
	GEN. EXTR. DEĞER	0.668	0.433	-0.162		
a)	GEN. NORMAL	0.826	0.55	-0.58		
ölg		MU	SIGMA	GAMMA		
Ä		(ortalama)	(St.Sap.)	(Çarpık.)		
	PEARSON TIP III	1	0.689	1.671		
		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.113	1.778	5.829	0.586	0.065

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.109 ve 4.110 da verilmiştir. Gözlenmiş değerler ve Çizelge 4.109, 4.110 da

4.BULGULAR VE TARTIŞMA

verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlenmiştir(Şekil 4.31, 4.32).

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	WAKEBY	У	Göz. Değer
-0.838	1.11	0.1	0.557	0.528	-1.210	0.409
-0.476	1.25	0.2	0.689	0.686	-0.717	0.599
0.37	2	0.5	0.952	0.954	-0.242	0.758
1.5	5	0.8	1.270	1.265	0.237	0.917
2.25	10	0.9	1.486	1.497	0.728	1.061
2.97	20	0.95	1.708	1.730	1.229	1.184
4.6	100	0.99	2.288	2.281	1.727	1.336
5.3	200	0.995	2.577	2.522	2.215	1.460
6.91	1000	0.999	3.360	3.090	2.702	1.636
9.21	10000	0.9999	4.830	3.923	3.411	1.789
					4.279	2.188
					4.827	1.875
					5.090	2.233

Çizelge 4.109. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)

Çizelge	4.110.	Dönüş	periyotlarına	karşılık	boyutsuz	verilere	uydurulan	ortak
		bölgese	l olasılık dağıl	ımının te	kerrür fonk	siyonu d	eğerleri (2.E	Bölge)

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	PE3	WAKEBY	У	Göz. Değer
-0.838	1.11	0.1	0.328	0.330	0.329	0.327	0.315	-1.231	0.203
-0.476	1.25	0.2	0.483	0.470	0.460	0.441	0.467	-0.741	0.370
0.37	2	0.5	0.843	0.832	0.826	0.818	0.828	-0.241	0.554
1.5	5	0.8	1.373	1.403	1.423	1.458	1.412	0.243	0.771
2.25	10	0.9	1.792	1.844	1.872	1.914	1.873	0.721	0.999
2.97	20	0.95	2.271	2.319	2.339	2.357	2.355	1.224	1.246
4.6	100	0.99	3.759	3.624	3.532	3.363	3.562	1.740	1.574
5.3	200	0.995	4.625	4.295	4.100	3.789	4.122	2.179	1.787
6.91	1000	0.999	7.404	6.170	5.567	4.768	5.524	2.674	2.078
9.21	10000	0.9999	14.304	9.859	8.070	6.154	7.803	3.766	2.677
								4.157	3.023

Şekil 4.31. Yeşilırmak Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)

Şekil 4.32. Yeşilırmak Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)

Yeşilırmak havzası 1.Bölge için en uygun dağılım, en küçük mutlak Z değerine sahip olan GLO, 2.bölge için ise GEV dağılımıdır. Bu dağılımlar kullanılarak, Monte Carlo simülasyon yöntemi ile bölgeler 500 kere simüle edilmiştir(NSIM=500). Bu bölgelere ait boyutsuz bölge büyüme oranları, bu oranların ortalama hataları ve hata bantları Çizelge 4. 111 ve 4.112 de verilmiştir.

T Dönüş Perivodu	F (Asılmama	q(F) (Büvüme	q(F) Büvüme		Hata Bantları		
(Yil)	Olasılığı)	Ēğrisi)	(Ort. Hata)	95%	5%	Fark	
1.111111	0.1	0.557	0.112	0.507	0.575	0.068	
1.25	0.2	0.689	0.064	0.651	0.706	0.055	
2	0.5	0.951	0.015	0.93	0.969	0.039	
5	0.8	1.27	0.029	1.252	1.299	0.047	
10	0.9	1.486	0.045	1.455	1.543	0.088	
20	0.95	1.708	0.059	1.656	1.802	0.146	
100	0.99	2.288	0.091	2.135	2.524	0.389	
200	0.995	2.577	0.104	2.367	2.903	0.536	
1000	0.999	3.36	0.137	2.941	3.977	1.036	
10000	0.9999	4.831	0.188	3.928	6.244	2.316	

Çizelge 4.111. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Çizelge 4.112. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)

T Dönüş	F	q(F)	RMSE	Hata Bantları			
Periyodu (Yıl)	(Aşılmama Olasılığı)	(Büyüme Eğrisi)	(Ort. Hata)	95%	5%	Fark	
1.111111	0.1	0.331	0.229	0.273	0.381	0.108	
1.25	0.2	0.47	0.13	0.413	0.514	0.101	
2	0.5	0.832	0.045	0.774	0.873	0.099	
5	0.8	1.403	0.034	1.355	1.438	0.083	
10	0.9	1.844	0.052	1.77	1.938	0.168	
20	0.95	2.319	0.074	2.175	2.546	0.371	
100	0.99	3.624	0.13	3.165	4.465	1.300	
200	0.995	4.295	0.157	3.632	5.585	1.953	
1000	0.999	6.171	0.224	4.777	9.164	4.387	
10000	0.9999	9.86	0.339	6.707	17.927	11.220	

Yeşilırmak havzası 1.bölge ve 2. bölge için alan-ortalama debi ilişkisi sırası ile Şekil 4.33 ve 4.34 deki gibidir. Yeşilırmak havzasında alanı bilinen herhangi bir bölgenin ortalama debisi 1.bölge için (4.23) nolu formül yardımı ile, 2.bölge için ise (4.24) nolu formül yardımı ile hesaplanabilir.

$$\overline{Q} = 0.2385 A^{0.7827}$$
 (1.Bölge) (4.23)

$$Q = 0.0253A + 11.169$$
 (2.Bölge) (4.24)

Yeşilırmak havzasının 1. ve 2. bölgeleri için sırası ile GLO ve GEV dağılımının ters fonksiyonunda Çizelge 4.108 de verilmiş olan ζ , alfa ve k parametreleri ve yukarıdaki formüllerle hesaplanan ortalama debi değerleri yerine yazılırsa Yeşilırmak havzasının 1. ve 2. bölgesi için gelebilecek taşkının büyüklüğü aşılmama olasılığına bağlı olarak (4.25) ve (4.26) nolu formül yardımı ile hesaplanabilir. Veya ortalama debi hesaplandıktan sonra GLO ve GEV dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri (Çizelge 4.111 ve Çizelge 4.112) ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.544 + 1.496 \left(\frac{(1-F)}{F}\right)^{-0.139}$$
(1.Bölge) (4.25)

$$\frac{Q}{\overline{Q}} = -2.005 + 2.673 (-\log F)^{-0.162}$$
 (2.Bölge) (4.26)

Şekil 4.33. Yeşilırmak Havzasının Alan-q ilişkisi (1.Bölge)

Şekil 4.34. Yeşilırmak Havzasının Alan-q ilişkisi (2.Bölge)

4.15. Kızılırmak Havzası

Kızılırmak havzasından toplam 40 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.113 de verilmiştir.

Kızılırmak havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.114 de verilmiştir. Bölge bütün olarak değerlendirildiğinde kritik Di değerine göre 1523 nolu istasyon uyumsuz olarak değerlendirilmiştir. Heterojenlik testine göre havza heterojen çıkmıştır. Bundan dolayı havza dört alt bölgeye ayrılmış ve Çizelge 4.114 den de görüldüğü gibi 4.bölge de yer alan 15-071 noulu istasyon uyumsuz çıkmıştır fakat bölge heterojenlik testinde homojen çıktığından dolayı bu istasyon çalışmaya dahil edilmiştir. Diğer bölgelerde uyumsuz istasyona rastlanmamış ve bu bölgelerde homojen çıkmıştır (Çizelge 4.115).

Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.116 da verilmiştir. Bu sonuçlara göre, 1.bölgeye Genelleştirilmiş Lojistik dağılım, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal dağılım, 2.bölgeye Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal ve Pearson Tip 3 dağılımları, 3.bölgeye Genelleştirilmiş Lojistik dağılım, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal dağılım, 4.bölgeye ise Genelleştirilmiş Normal dağılım, Pearson Tip 3 ve Genelleştirilmiş Pareto dağılımları uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.117 de verilmiştir.

<u> </u>				0
	Gözlem	Gözlem		
İstasyon	Yapan	Süresi		Qort.
No	Kurum	(yıl)	Alan (km ²)	(m ³ /s)
15-025	DSİ	19	199.3	18.7
15-078	DSİ	19	440.6	35.3
15-093	DSİ	22	913.3	126.6
15-107	DSİ	24	140.7	27.6
15-133	DSİ	20	1326.9	62.8
1524	EIEI	37	4192.4	189.7
1528	EİEİ	32	57612.4	408.8
1533	EİEİ	30	75120.8	736.3
1536	EİEİ	34	60559.6	449.5
1538	EİEİ	19	1962	179.1
15-148	DSİ	20	44.7	11.0
15-163	DSİ	17	156	18.6
1503	EİEİ	47	30186	359.3
15-056	DSİ	22	512	30.8
15-066	DSİ	26	211.1	13.7
1508	EİEİ	38	2918.4	44.7
1517	EİEİ	37	8592.4	65.0
15-010	DSİ	28	1825	19.1
15-054	DSİ	24	748	12.1
15-055	DSİ	27	362	6.0
15-068	DSİ	25	251.7	10.1
15-074	DSİ	26	91.7	3.9
15-108	DSİ	24	427.5	6.8
15-131	DSİ	20	240.9	9.6
15-152	DSİ	15	213.6	6.4
15-167	DSİ	17	398.8	6.8
1535	EİEİ	37	6607.6	348.0
15-046	DSİ	22	83	14.6
15-047	DSİ	26	580	69.5
1539	EİEİ	19	1642	193.6
15-117	DSİ	22	692.2	112.5
15-041	DSİ	23	378	48.3
1501	EİEİ	60	15581.6	453.7
1523	EİEİ	27	2325.2	13.3
1532	EİEİ	39	20622	506.6
15-021	DSİ	24	298	25.9
15-048	DSI	24	393	21.8
15-071	DSİ	25	174.9	13.4
15-099	DSİ	22	257	20.7
15-162	DSI	19	248.6	19.6

Çizelge 4.113. Kızılırmak Havzasına Ait Bilgiler
g		n						Tüm	
ŝ	İstasyon	(gözlem	Qort.					Bölge	
	No	süresi)	(m ³ /s)	t	t ₃	t ₄	t ₅	için Di	Di
	15-025	19	18.7	0.2471	0.3089	0.2243	0.0781	1.05	1.51
	15-078	19	35.3	0.3585	0.3369	0.1624	0.0579	0.59	1.02
	15-093	22	126.6	0.3262	0.3040	0.1878	0.1139	0.18	0.26
	15-107	24	27.6	0.3765	0.2772	0.1790	0.0992	0.1	0.5
	15-133	20	62.8	0.3805	0.3060	0.1918	0.1338	0.07	0.45
	1524	37	189.7	0.3265	0.3837	0.3358	0.2065	1.56	1.76
	1528	32	408.8	0.2575	0.2342	0.2556	0.1446	0.73	0.81
g	1533	30	736.3	0.2199	0.2111	0.2402	0.0887	0.8	1.1
ŝ	1536	34	449.5	0.2636	0.2746	0.1803	0.1073	0.64	1.24
Щ.	1538	19	179.1	0.3350	0.3567	0.2907	0.1630	0.77	0.82
	15-148	20	11.0	0.3246	0.1661	0.1264	0.0282	0.69	0.76
	15-163	17	18.6	0.4569	0.3716	0.1682	0.0878	0.66	2.1
	1503	47	359.3	0.3340	0.2815	0.1706	-0.0083	0.07	0.21
	15-056	22	30.8	0.3169	0.3318	0.2860	0.1531	0.7	0.71
	15-066	26	13.7	0.3184	0.3344	0.2317	0.1534	0.37	0.23
	1508	38	44.7	0.2856	0.1546	0.1216	0.0717	0.63	0.79
	1517	37	65.0	0.2781	0.0429	0.1053	0.0949	2.99	2.74
	15-010	28	19.1	0.3422	0.1541	0.0616	0.0330	1.21	1.09
	15-054	24	12.1	0.3393	0.3011	0.2657	0.1722	0.58	1.91
	15-055	27	6.0	0.4065	0.2297	0.0509	0.0432	1.33	0.53
ge	15-068	25	10.1	0.5045	0.3619	0.1882	0.0972	1.24	1.13
<u>Söl</u>	15-074	26	3.9	0.4435	0.3931	0.2584	0.1684	0.89	0.87
2.E	15-108	24	6.8	0.4558	0.3269	0.1874	0.1503	0.68	0.3
	15-131	20	9.6	0.4028	0.1937	0.1495	0.0865	1.54	1.39
	15-152	15	6.4	0.4375	0.3027	0.0952	0.0069	0.93	0.42
	15-167	17	6.8	0.3854	0.2989	0.0743	0.0228	1.53	1.37
	1535	37	348.0	0.2280	0.1647	0.1677	0.0580	0.63	0.17
	15-046	22	14.6	0.3298	0.2331	0.2622	0.1390	1.49	1.99
	15-047	26	69.5	0.2400	0.2302	0.2628	0.1202	0.89	1.09
ge	1539	19	193.6	0.2437	0.1366	0.1255	-0.0219	0.81	0.86
<u>0</u>	15-117	22	112.5	0.2651	0.3223	0.2986	0.1638	1.07	1.35
3.	15-041	23	48.3	0.1901	0.1028	0.1264	0.0820	1.37	1.26
	1501	60	453.7	0.2218	0.1754	0.1610	0.0534	0.65	0.11
	1523	27	13.3	0.1917	0.2565	0.1147	-0.0340	3.69 *	1.86
	1532	39	506.6	0.2370	0.2479	0.1815	0.0829	0.72	0.32
	15-021	24	25.9	0.4652	0.3837	0.1184	0.0313	1.49	1.29
ge	15-048	24	21.8	0.4807	0.3598	0.1495	0.0413	0.87	0.21
<u>Böl</u>	15-071	25	13.4	0.4690	0.4059	0.2478	0.1907	1.04	1.33 *
4.E	15-099	22	20.7	0.4977	0.3242	0.1262	0.0527	1.21	0.86
	15-162	19	19.6	0.4335	0.4689	0.2741	0.1731	1.55	1.3
	Tüm Bölg	e için Ağı	rlıklı						
	bölgese	el ortalam	а	0.328	0.2656	0.1848			

Çizelge 4.114. Kızılırmak Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

		3	3		
HETEROJENLİK ÖLÇÜSÜ (Simülasyon	Tüm				
Sayısı=500)	Bölge	1.Bölge	2.Bölge	3.Bölge	4.Bölge
Gözlenen değerlerin Grup LCv lerinin Standart					
sapması	0.0895	0.0513	0.0528	0.0346	0.02
Grup LCv lerinin Standart sapmasının					
Simülasyon ortalamaları	0.0463	0.0451	0.0491	0.0315	0.0484
Grup LCv lerinin Standart sapmasının					
simülasyonlarının standart sapması	0.0054	0.0086	0.0126	0.0084	0.0167
Standartlaştırılmış H(1) değerleri	7.98 **	0.72	0.29	0.37	-1.71
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1161	0.0921	0.0857	0.0594	0.0397
Ortalama LCv/LCs mesafesinin simülasyon					
ortalaması	0.0972	0.0988	0.0928	0.0838	0.0916
Ortalama LCv/LCs mesafesinin simülasyon					
standart sapması	0.0103	0.0162	0.0211	0.0199	0.0288
Standartlaştırılmış H(2) değerleri	1.84 *	-0.41	-0.34	-1.23	-1.8
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1014	0.0935	0.1058	0.0722	0.0738
Ortalama LCs/LCk mesafesinin simülasyon					
ortalaması	0.1207	0.1223	0.1145	0.1054	0.1171
Ortalama LCs/LCk mesafesinin simülasyon					
standart sapması	0.0126	0.0193	0.0253	0.0237	0.0371
Standartlaştırılmış H(3) değerleri	-1.53	-1.49	-0.35	-1.4	-1.16

Çizelge 4.115. Kızılırmak Havzasının Heterojenlik Ölçüsü

Çizelge 4.116. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)

	1.Bölge		2.Bölge		3.Bölge		4.Bölge	
Dağılımlar	L-KUR.	Z	L-KUR.	Z	L-KUR.	Z	L-KUR.	Z
GEN. LOJISTIK	0.225	0.54 *	0.234	2.37	0.202	0.43 *	0.291	2.07
GEN.EXT. DEĞ.	0.194	-0.66 *	0.205	1.51 *	0.165	-0.89 *	0.272	1.70
GEN. NORMAL	0.177	-1.32 *	0.186	0.93 *	0.156	-1.22 *	0.241	1.07 *
PEA. TİP III	0.148	-2.49	0.152	-0.08 *	0.137	-1.89	0.187	0.00 *
GEN. PARETO	0.117	-3.72	0.130	-0.77 *	0.080	-3.92	0.210	0.47 *

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.118, 4.119, 4.120 ve 4.121 de verilmiştir. Gözlenmiş değerler ve bu çizelgelerdeki dağılımlara ait değerler kullanılarak taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.35, 4.36, 4.37, 4.38).

ilge						
B		ζ (yer	ALFA (ölçek	K (şekil		
	Dağılımlar	parametresi)	parametresi)	parametresi)		
	GEN. LOJIS.	0.87	0.276	-0.264		
ge	GEN.EXT.DEĞ.	0.715	0.387	-0.141		
<u>3öl</u>	GEN. NORMAL	0.856	0.486	-0.549		
1.1		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.179	2.124	6.262	0.485	0.082
	GEN.EXT.DEĞ.	0.615	0.496	-0.169		
	GEN. NORMAL	0.796	0.632	-0.591		
۵ ۵	GEN. PARETO	0.127	0.975	0.117		
ölg		MU	SIGMA	GAMMA		
M M		(ortalama)	(St.Sap.)	(Çarpık.)		
	PEAR. TİPIII	1	0.799	1.702		
		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.1	0.474	1.701	0.715	0.014
	GEN. LOJIS.	0.923	0.219	-0.205		
ge	GEN.EXT.DEĞ.	0.797	0.321	-0.054		
Böl	GEN. NORMAL	0.915	0.386	-0.424		
3.		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.286	2.767	8.121	0.415	-0.01
	GEN. NORMAL	0.693	0.629	-0.82		
	GEN. PARETO	0.113	0.785	-0.115		
ge		MU	SIGMA	GAMMA		
Böl		(ortalama)	(St.Sap.)	(Çarpık.)		
4.	PEAR. TİPIII	1	0.978	2.323		
		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.113	0	0	0.785	0.115

Çizelge 4.117. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Çizelge 4.118. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)

							-	
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	WAKEBY	У	Göz. Değer
-0.838	1.11	0.1	0.409	0.41	0.409	0.394	-1.234	0.277
-0.476	1.25	0.2	0.549	0.537	0.529	0.544	-0.729	0.462
0.37	2	0.5	0.87	0.86	0.856	0.86	-0.242	0.617
1.5	5	0.8	1.332	1.36	1.376	1.353	0.240	0.805
2.25	10	0.9	1.693	1.739	1.76	1.747	0.733	1.015
2.97	20	0.95	2.101	2.141	2.154	2.165	1.215	1.227
4.6	100	0.99	3.344	3.219	3.145	3.232	1.709	1.426
5.3	200	0.995	4.057	3.76	3.611	3.737	2.196	1.729
6.91	1000	0.999	6.305	5.237	4.8	5.027	2.702	2.028
9.21	10000	0.9999	11.729	8.026	6.792	7.195	3.518	2.360
							4.187	2.779
							4.662	2.818

5.141

2.400

		(2.Doige)							
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GEV	GNO	PE3	GPA	WAKEBY	У	Göz. Değer
-0.838	1.11	0.1	0.23	0.228	0.226	0.229	0.221	-1.204	0.176
-0.476	1.25	0.2	0.389	0.377	0.354	0.342	0.347	-0.733	0.247
0.37	2	0.5	0.803	0.796	0.786	0.776	0.79	-0.249	0.451
1.5	5	0.8	1.462	1.485	1.527	1.558	1.524	0.242	0.733
2.25	10	0.9	1.973	2.007	2.057	2.095	2.045	0.739	1.013
2.97	20	0.95	2.528	2.553	2.576	2.591	2.563	1.226	1.299
4.6	100	0.99	4.065	3.954	3.752	3.599	3.777	1.734	1.695
5.3	200	0.995	4.861	4.626	4.251	3.978	4.308	2.278	2.073
6.91	1000	0.999	7.109	6.367	5.401	4.747	5.559	2.859	2.631
9.21	10000	0.9999	11.595	9.355	7.028	5.624	7.398	3.542	2.406
								4.251	3.178

Çizelge 4.119. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge)

Çizelge 4.120.	Dönüş	periyotlarına	karşılık	boyutsuz	verilere	uydurul	an ortak
	bölgese	l olasılık	dağılımın	ın tekerri	ür fonk	siyonu	değerleri
	(3.Bölge	e)					

		_						
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	WAKEBY	у	Göz. Değer
-0.838	1.11	0.1	0.536	0.535	0.533	0.525	-1.510	0.332
-0.476	1.25	0.2	0.659	0.646	0.641	0.663	-1.214	0.408
0.37	2	0.5	0.923	0.916	0.915	0.912	-0.737	0.570
1.5	5	0.8	1.273	1.298	1.305	1.289	-0.251	0.733
2.25	10	0.9	1.529	1.565	1.571	1.571	0.244	0.870
2.97	20	0.95	1.806	1.831	1.832	1.852	0.741	1.033
4.6	100	0.99	2.592	2.473	2.444	2.495	1.221	1.188
5.3	200	0.995	3.013	2.764	2.716	2.769	1.702	1.383
6.91	1000	0.999	4.25	3.483	3.376	3.397	2.212	1.555
9.21	10000	0.9999	6.902	4.626	4.405	4.279	2.778	1.658
							3.525	1.745
							4.217	2.331
							4.682	2.563

		(4.Bolge)						
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GNO	PE3	GPA	WAKEBY	У	Göz. Değer
-0.838	1.11	0.1	0.195	0.205	0.197	0.197	-1.267	0.178
-0.476	1.25	0.2	0.311	0.281	0.291	0.291	-0.760	0.232
0.37	2	0.5	0.693	0.665	0.68	0.68	-0.238	0.363
1.5	5	0.8	1.456	1.539	1.501	1.501	0.251	0.595
2.25	10	0.9	2.12	2.243	2.182	2.182	0.715	0.876
2.97	20	0.95	2.882	2.965	2.919	2.919	1.203	1.282
4.6	100	0.99	5.096	4.68	4.875	4.875	1.728	1.843
5.3	200	0.995	6.27	5.43	5.835	5.835	2.213	2.246
6.91	1000	0.999	9.601	7.185	8.38	8.38	2.990	2.970
9.21	10000	0.9999	16.133	9.719	12.944	12.944	4.209	3.534

Çizelge 4. 121. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (4.Bölge)

Şekil 4.35. Kızılırmak Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)

Şekil 4.36. Kızılırmak Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)

Şekil 4.37. Kızılırmak Havzasına Ait Taşkın Frekans Eğrileri (3.Bölge)

Şekil 4.38. Kızılırmak Havzasına Ait Taşkın Frekans Eğrileri (4.Bölge)

T Dönüş	F	q(F)	RMSE	Hata Bantları			
Periyodu (Yıl)	(Aşılmama Olasılığı)	(Büyüme Eğrisi)	(Ort. Hata)	95%	5%	Fark	
1.111111	0.1	0.409	0.322	0.329	0.411	0.082	
1.25	0.2	0.549	0.170	0.485	0.563	0.078	
2	0.5	0.870	0.041	0.822	0.890	0.068	
5	0.8	1.332	0.047	1.300	1.357	0.057	
10	0.9	1.693	0.078	1.636	1.759	0.123	
20	0.95	2.101	0.104	2.005	2.255	0.250	
100	0.99	3.345	0.154	3.044	3.912	0.868	
200	0.995	4.057	0.174	3.616	4.938	1.322	
1000	0.999	6.306	0.218	5.332	8.498	3.166	
10000	0.9999	11.730	0.280	9.152	18.508	9.356	

Çizelge 4.122. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Kızılırmak havzası 1. ve 3. Bölge için en uygun dağılım, en küçük mutlak Z değerine sahip olan GLO, 2. ve 4. bölge için ise PE3 dağılımıdır. Bu dağılımlar kullanılarak, Monte Carlo simülasyon yöntemi ile bölgeler 500 kere simüle edilmiştir(NSIM=500). Bu bölgelere ait boyutsuz bölge büyüme oranları, bu oranların ortalama hataları ve hata bantları Çizelge 4.122, 4.123, 4.124 ve 4.125 de verilmiştir.

Çizelge 4.123. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3)

T Dönüş Perivodu	F (Asilmama	q(F) (Büyüme	RMSE	Hata Bantları			
(Yil)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark	
1.111111	0.1	0.226	0.472	0.156	0.25	0.094	
1.25	0.2	0.354	0.223	0.29	0.402	0.112	
2	0.5	0.786	0.059	0.721	0.854	0.133	
5	0.8	1.527	0.038	1.487	1.557	0.070	
10	0.9	2.057	0.063	1.942	2.168	0.226	
20	0.95	2.576	0.082	2.367	2.795	0.428	
100	0.99	3.752	0.112	3.306	4.264	0.958	
200	0.995	4.252	0.12	3.697	4.911	1.214	
1000	0.999	5.401	0.136	4.577	6.417	1.840	
10000	0.9999	7.029	0.151	5.821	8.624	2.803	

Çizelge 4.124. 3.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

T Dönüş	F	q(F)	RMSE		Hata Bantlar	
Periyodu (Yıl)	(Aşılmama Olasılığı)	(Büyüme Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.536	0.100	0.490	0.565	0.075
1.25	0.2	0.659	0.062	0.618	0.683	0.065
2	0.5	0.923	0.021	0.891	0.943	0.052
5	0.8	1.273	0.024	1.251	1.298	0.047
10	0.9	1.529	0.040	1.491	1.589	0.098
20	0.95	1.806	0.057	1.734	1.928	0.194
100	0.99	2.592	0.096	2.378	2.960	0.582
200	0.995	3.013	0.114	2.714	3.571	0.857
1000	0.999	4.250	0.158	3.632	5.493	1.861
10000	0.9999	6.902	0.227	5.420	10.150	4.730

T Dönüş	F	q(F)	RMSE	Hata Bantları		I
Periyodu (Yıl)	(Aşılmama Olasılığı)	(Büyüme Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.205	0.244	0.152	0.317	0.165
1.25	0.2	0.281	0.188	0.215	0.368	0.153
2	0.5	0.665	0.118	0.553	0.797	0.244
5	0.8	1.539	0.024	1.49	1.598	0.108
10	0.9	2.243	0.053	2.097	2.468	0.371
20	0.95	2.965	0.086	2.644	3.458	0.814
100	0.99	4.681	0.134	3.893	5.955	2.062
200	0.995	5.43	0.148	4.433	7.099	2.666
1000	0.999	7.186	0.172	5.692	9.81	4.118
10000	0.9999	9.721	0.194	7.535	13.886	6.351

Çizelge 4.125. 4.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3)

Kızılırmak havzası 1., 2., 3. ve 4. bölgeler için alan-ortalama debi ilişkisi sırası ile Şekil 4.39, 4.40, 4.41, ve 4.42 deki gibidir. Kızılırmak havzasında alanı bilinen herhangi bir bölgenin ortalama debisi aşağıdaki formüller ile hesaplanabilir.

$$\overline{Q} = 0.0078A + 50.828$$
 (1. bölge) (4.27)

$$Q = 0.0078A + 5.014$$
 (2. bölge) (4.28)

$$\overline{Q} = 2.11A^{0.555}$$
 (3. bölge) (4.29)

$$\overline{\mathbf{Q}} = 0.481 \mathrm{A}^{0.6665}$$
 (4.bölge) (4.30)

Kızılırmak havzasının 1. ve 3. bölgeleri için GLO dağılımının ters fonksiyonunda Çizelge 4.117 de verilmiş olan ζ , alfa ve k parametreleri ve yukarıdaki formüllerle hesaplanan ortalama debi değerleri yerine yazılırsa Kızılırmak havzasının 1. ve 3. bölgesi için gelebilecek taşkının büyüklüğü aşılmama olasılığına bağlı olarak (4.31) ve (4.32) nolu formül yardımı ile hesaplanabilir. Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri (Çizelge 4.118, 4.119) ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir. Kızılırmak havzasının 2. ve 4. bölgeleri için uygun olan PE3 dağılımının ters fonksiyonu analitik olarak verilememektedir.

$$\frac{Q}{\overline{Q}} = -0.176 + 1.046 \left(\frac{(1-F)}{F}\right)^{-0.264}$$
(1.Bölge) (4.31)

$$\frac{Q}{\overline{Q}} = -0.145 + 1.068 \left(\frac{(1-F)}{F}\right)^{-0.205}$$
(3.Bölge) (4.32)

Şekil 4.39. Kızılırmak Havzasının Alan-q ilişkisi (1.Bölge)

Şekil 4.40. Kızılırmak Havzasının Alan-q ilişkisi (2.Bölge)

Şekil 4.41. Kızılırmak Havzasının Alan-q ilişkisi (3.Bölge)

Şekil 4.42. Kızılırmak Havzasının Alan-q ilişkisi (4.Bölge)

Kızılırmak havzasının 4. bölgesinin Alan-Q_{ort} ilişkisi için yapılan regresyon analizi sonuçları Çizelge 4.126 da verilmiştir.

	30-			3	
Regresyon İsta	tistikleri				
Çoklu R	0.808721				
R Kare	0.65403				
Ayarlı R Kare	0.538707				
Standart Hata	0.164813				
Gözlem	5				
	df	SS	MS	F	Anlamlılık F
Regresyon	1	0.154051	0.154051	5.671278	0.097491
Fark	3	0.08149	0.027163		
Toplam	4	0.235541			
	Katsayılar	Standart Hata	t Stat	P-değeri	
Kesişim	-0.73193	1.563519	-0.46813	0.671602	
X Değişkeni 1	0.666539	0.279889	2.381444	0.097491	

Çizelge 4.126.	Regresyon	analizi	sonuçl	lar
----------------	-----------	---------	--------	-----

4.16. Konya Havzası

Konya havzasından toplam 15 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.127 de verilmiştir.

Çizelge 4.127. Konya Havzasına Ait Bilgiler							
	Gözlem	Gözlem					
İstasyon	Yapan	Süresi	Alan	Qort.			
No	Kurum	(yıl)	(km ²)	(m ³ /s)			
16-013	DSİ	25	519.0	17.0			
16-015	DSİ	22	153.8	11.5			
16-028	DSİ	31	209.6	23.3			
16-072	DSİ	23	566.2	9.6			
16-078\B	DSİ	17	111.8	58.7			
16-080	DSİ	21	497.4	9.9			
16-087	DSİ	21	1137.1	15.7			
16-088	DSİ	20	476.3	9.0			
16-092	DSİ	20	1696.1	17.9			
1611	EİEİ	27	271.2	38.8			
1612	EİEİ	33	267.6	18.5			
1622	EİEİ	31	593.2	9.0			
1620	EİEİ	18	699.2	2.7			
1608	EİEİ	19	145.2	12.5			
1617	EİEİ	14	225.6	17.6			

Çizelge 4.127. Konya Havzasına Ait Bilgiler

Konya havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.128 de verilmiştir. Çizelgeden de anlaşıldığı gibi uyumsuz istasyon bulunmamaktadır.

Çizelge 4.128. Konya Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

	Olçusi	u					
İstasyon No	n (gözlem süresi)	Qort. (m ³ /s)	t	t ₃	t ₄	t ₅	Di
16-013	25	16.96	0.2610	0.0838	0.1966	0.0883	0.98
16-015	22	11.50	0.2632	0.0217	0.2522	0.0680	2.66
16-028	31	23.25	0.4290	0.5406	0.4682	0.3423	1.79
16-072	23	9.57	0.4120	0.2625	0.0794	0.0559	0.84
16-078\B	17	58.64	0.2821	0.2558	0.1570	0.1080	1.34
16-080	21	9.88	0.4824	0.4946	0.2674	0.1017	0.89
16-087	21	15.66	0.4106	0.3662	0.1778	0.0808	0.34
16-088	20	9.02	0.3673	0.2379	0.2039	0.1420	0.21
16-092	20	17.91	0.3365	0.3708	0.2773	0.1260	0.32
1611	27	38.82	0.3696	0.4142	0.3444	0.2611	0.32
1612	33	18.50	0.2679	0.1087	0.1202	0.0594	0.90
1622	31	8.95	0.4129	0.4697	0.3742	0.2576	0.66
1620	18	2.68	0.3912	0.3740	0.2091	0.1597	0.22
1608	19	12.47	0.2980	0.4415	0.3525	0.2919	1.54
1617	14	17.59	0.4770	0.2492	0.0506	0.0707	1.99
Ağırlıklı	ı bölgesel c	ortalama	0.3617	0.3155	0.247		

Çizelge 4.129 daki H₁ değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.130 da verilmiştir. Bu sonuçlara göre Genelleştirilmiş Ekstrem Değer ve Genelleştirilmiş Lojistik dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Lojistik dağılım en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4.131 de görülmektedir.

Çizelge 4.129. Konya Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)						
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0724					
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0621					
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0143					
Standartlaştırılmış H(1) değerleri	0.72					
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1564					
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1246					
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0227					
Standartlaştırılmış H(2) değerleri	1.40 *					
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.181					
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1523					
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.028					
Standartlaştırılmış H(3) değerleri	1.02 *					

Çizelge 4.130. Uygunluk Testi Sonuçları

3 0		
GEN. LOJISTIK	L-BASIKLIK= 0.250	Z = -0.65 *
GEN. EKS DEĞ.	L-BASIKLIK= 0.224	Z = -1.38 *
GEN. NORMAL	L-BASIKLIK= 0.201	Z = -2.05
PEARSON TÌP III	L-BASIKLIK= 0.161	Z = -3.19
GEN. PARETO	L-BASIKLIK= 0.153	Z = -3.42

Çizelge 4.131. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

	ζ(ver	ALEA (ölcek	K (sekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
GEN. LOJISTIK	0.821	0.305	-0.316		
GEN. EKS DEĞ.	0.654	0.41	-0.215		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.123	1.731	4.061	0.401	0.249

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.132 de verildi. Gözlenmiş değerler ve Çizelge 4.132 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.43).

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	Wakeby	У	Göz. Değer
-0.838	1.11	0.1	0.337	0.341	0.315	-1.219	0.282
-0.476	1.25	0.2	0.478	0.469	0.47	-0.726	0.388
0.37	2	0.5	0.821	0.811	0.828	-0.240	0.582
1.5	5	0.8	1.352	1.379	1.344	0.243	0.778
2.25	10	0.9	1.789	1.84	1.798	0.741	1.005
2.97	20	0.95	2.304	2.357	2.337	1.235	1.162
4.6	100	0.99	3.979	3.87	4.012	1.724	1.431
5.3	200	0.995	4.995	4.695	4.968	2.196	1.722
6.91	1000	0.999	8.408	7.154	7.941	2.694	1.953
9.21	10000	0.9999	17.548	12.53	14.911	3.552	3.124
						4.241	3.243

Çizelge 4.132. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.43. Konya Havzasına Ait Taşkın Frekans Eğrileri

Quere 4.155. Dorgeser Duyune Egrisinii Dogrunuk Olçuleri (OLO)								
T Dönüş Periyodu	F (Aşılmama Olasılığı)	q(F) (Büyüme Eğrisi)	RMSE (Ort. Hata)	Hata Bantları		rı		
(11)	Clashigi)	Lgrisi)	Παία	95%	5%	Fark		
1.111111	0.1	0.337	0.365	0.261	0.361	0.1		
1.25	0.2	0.478	0.188	0.416	0.518	0.102		
2	0.5	0.821	0.057	0.758	0.858	0.1		
5	0.8	1.352	0.044	1.302	1.371	0.069		
10	0.9	1.789	0.071	1.714	1.850	0.136		
20	0.95	2.304	0.097	2.153	2.479	0.326		
100	0.99	3.978	0.154	3.497	4.804	1.307		
200	0.995	4.994	0.178	4.278	6.349	2.071		
1000	0.999	8.407	0.235	6.761	12.243	5.482		
10000	0.9999	17.544	0.320	12.948	31.611	18.663		

Çizelge 4.133. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Konya havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan Genelleştirilmiş Lojistik dağılımı için bölge 500 kere simüle edilmiştir(NSIM=500). Boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.133 de verilmiştir.

Konya havzası için alan-q ilişkisi Şekil 4.44 deki gibidir. Konya havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.33) nolu formül yardımı ile hesaplanabilir.

$$\frac{\overline{Q}}{A} = q = 785618.26 A^{-3.048} \Longrightarrow 785618.26 A^{-2.048}$$
(4.33)

Konya havzasına en uygun olan GLO dağılımının ters fonksiyonunda yer alan ζ , alfa ve k parametreleri Çizelge 4.131 de görülmektedir. Bu değerler ve (4.33) nolu denklem yardımı ile hesaplanan \overline{Q} değeri yerine koyulursa aşılmama olasılığına karşı gelebilecek taşkının büyüklüğü GLO dağılımına göre hesaplanmış olacaktır(Eş. (4.34)). Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.144 + 0.965 \left(\frac{1-F}{F}\right)^{-0.316}$$
(4.34)

Şekil 4.44. Konya Havzasının Alan-Q(Debi) ilişkisi

4.17. Doğu Akdeniz Havzası

Doğu Akdeniz havzasından toplam 13 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.134 de verilmiştir.

	Gözlem	Gözlem		
İstasyon	Yapan	Süresi	Alan	Qort.
No	Kurum	(yıl)	(km²)	(m³/s)
17-011	DSİ	25	410.0	63.0
17-016	DSİ	21	2994.0	265.0
17-017	DSİ	20	364.0	54.5
1701	EİEİ	31	422.4	96.7
1712	EİEİ	38	2689.2	233.0
1714	EİEİ	39	10065.2	854.2
1719	EİEİ	30	3499.6	654.9
1720	EİEİ	34	4304.0	317.8
1721	EİEİ	31	313.2	272.0
1703	EİEİ	16	3584.4	451.3
1702	EİEİ	13	1500.0	170.5
17-024	DSİ	13	199.0	47.8
17-012	DSİ	10	156.4	28.8

Çizelge 4.134. Doğu Akdeniz Havzasına Ait Bilgiler

Doğu Akdeniz havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.135 de verilmiştir. Çizelgeden de anlaşıldığı gibi uyumsuz istasyon bulunmamaktadır.

	2		3				
İstasyon	n (gözlem	Q_{ort} .					Di
INO	suresi)	(m /s)	l	l ₃	ι ₄	l5	DI
17-011	25	62.96	0.3220	0.2050	0.1470	0.0300	1.31
17-016	21	265	0.1950	0.2410	0.2140	0.0500	1.07
17-017	20	54.45	0.1960	0.0380	0.0420	0.0370	1.79
1701	31	96.699	0.3000	0.4340	0.3150	0.1670	1.00
1712	38	233.037	0.2190	0.2200	0.2040	0.0900	0.35
1714	39	854.205	0.2190	0.0040	0.0990	0.0280	0.66
1719	30	654.867	0.2720	0.0540	0.0850	0.0640	1.00
1720	34	317.794	0.2390	0.2580	0.2570	0.0250	0.19
1721	31	271.965	0.2690	0.1550	0.1990	0.0620	0.25
1703	16	451.294	0.2460	0.4020	0.2880	0.4400	0.98
1702	13	170.488	0.1860	-0.0020	0.3030	0.1230	2.71
17-024	13	47.808	0.3210	0.4170	0.2650	0.0920	1.07
17-012	10	28.8	0.2400	0.0880	0.2340	0.0810	0.62
Ağırlıklı	bölgesel o	rtalama	0.2485	0.1895	0.1937		

Çizelge 4.135. Doğu Akdeniz Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

Çizelge 4.136 daki H_1 ve H_3 değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.137 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Ekstrem Değer ve Genelleştirilmiş Lojistik dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Lojistik dağılım en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4.138 de görülmektedir.

Çizelge 4.136. Doğu Akdeniz Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0415
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0396
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0089
Standartlaştırılmış H(1) değerleri	0.21
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1283
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1015
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0202
Standartlaştırılmış H(2) değerleri	1.33 *
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1393
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1269
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0227
Standartlaştırılmış H(3) değerleri	0.55

Çizelge 4.137. Uygunluk Testi Sonuçları

, , , , , , , , , , , , , , , , , , , ,	20 3	
GEN. LOJISTIK	L-BASIKLIK= 0.197	Z = -0.20 *
GEN. EKS DEĞ.	L-BASIKLIK= 0.158	Z = -1.56 *
GEN. NORMAL	L-BASIKLIK= 0.151	Z = -1.82
PEARSON TÌP III	L-BASIKLIK= 0.134	Z = -2.40
GEN. PARETO	L-BASIKLIK= 0.071	Z = -4.63

Çizelge 4.138. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	K (şekil parametresi)		
GEN. LOJISTIK	0.924	0.234	-0.189		
GEN. EKS DEĞ.	0.788	0.348	-0.03		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.244	2.46	5.683	0.362	0.066

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.139 da verildi. Gözlenmiş değerler ve Çizelge 4.139 da verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.45).

bolgesel olasink daginininin tekentul lonksiyonu degenen								
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	Wakeby	у	Göz. Değer	
-0.838	1.11	0.1	0.503	0.501	0.477	-1.200	0.362	
-0.476	1.25	0.2	0.638	0.624	0.636	-0.721	0.539	
0.37	2	0.5	0.924	0.917	0.925	-0.239	0.730	
1.5	5	0.8	1.295	1.323	1.292	0.249	0.884	
2.25	10	0.9	1.562	1.600	1.578	0.737	1.025	
2.97	20	0.95	1.847	1.871	1.877	1.242	1.178	
4.6	100	0.99	2.640	2.508	2.628	1.751	1.415	
5.3	200	0.995	3.057	2.789	2.977	2.225	1.632	
6.91	1000	0.999	4.261	3.464	3.851	2.669	1.750	
9.21	10000	0.9999	6.764	4.488	5.277	3.352	1.983	
						4.416	2.165	

Çizelge 4.139. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.45. Doğu Akdeniz Havzasına Ait Taşkın Frekans Eğrileri

3						-(
T Dönüş Periyodu	F (Aşılmama	q(F) (Büyüme	RMSE (Ort.		Hata Bantlar	I
(11)	Olasiliyi)	Egnsi)	Tala)	95%	5%	Fark
1.111111	0.1	0.503	0.161	0.439	0.580	0.141
1.25	0.2	0.639	0.096	0.585	0.700	0.115
2	0.5	0.924	0.031	0.882	0.965	0.083
5	0.8	1.295	0.037	1.246	1.330	0.084
10	0.9	1.562	0.060	1.472	1.645	0.173
20	0.95	1.847	0.083	1.690	2.003	0.313
100	0.99	2.639	0.140	2.241	3.100	0.859
200	0.995	3.057	0.166	2.485	3.739	1.254
1000	0.999	4.261	0.234	3.168	5.824	2.656
10000	0.9999	6.764	0.353	4.295	10.998	6.703

					••	
C ¹ 1 1 1 1 0	D.:.1 1	D	T U · · · ·	D V 1 1	O11 .	(OT O)
$1'_{17} = 0 = 0 = 1 = 1 = 1 = 1$	Dalgagal	Diitimo	Langann		(Monilows	
	BOILDEVEL	BHWHHE	E OT ISTUUT	\mathbf{n}		
CILCIZC T.ITU.	DUIZUSUI	Duvunic			Olution	
3 0 0 0			0	- 0	- 5	/

Doğu Akdeniz havzası için en uygun dağılım olan Genelleştirilmiş Lojistik dağılımı için boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla bölge 500 kere simüle edilmiştir(NSIM=500). Yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.140 da verilmiştir.

Doğu Akdeniz havzası için Alan-Q_{ort} ilişkisi Şekil 4.46 daki gibidir. Doğu Akdeniz havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.35) nolu formül yardımı ile hesaplanabilir.

$$\overline{Q} = 1.371 A^{0.6878}$$
 (4.35)

Doğu Akdeniz havzasına en uygun olan GLO dağılımının ters fonksiyonunda yer alan ζ , alfa ve k parametreleri Çizelge 4.138 de görülmektedir. Bu değerler ve (4.35) nolu denklem yardımı ile hesaplanan \overline{Q} değeri yerine koyulursa aşılmama olasılığına karşı gelebilecek taşkının büyüklüğü GLO dağılımına göre hesaplanmış olacaktır(Eş.(4.36)). Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.314 + 1.238 \left(\frac{1-F}{F}\right)^{-0.189}$$
(4.36)

Şekil 4.46. Doğu Akdeniz Havzasının Alan-Qort(Debi) ilişkisi

4.18. Seyhan Havzası

Seyhan havzasından toplam 15 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.141 de verilmiştir.

3	Ŭ			Ũ
İstasyon	Gözlem Yapan	Gözlem Süresi		
No	Kurum	(vil)	Alan (km^2)	Qort (m ³ /s)
18-008	DSI	27	9.9	2.8
1801	EİEİ	56	2596.8	198.4
1802	EİEİ	19	7379.3	88.7
1804	EİEİ	20	4389.2	44.2
1812	EİEİ	19	2623.2	40.2
1822	EİEİ	22	6334.8	80.7
1823	EİEİ	17	2756.0	48.7
1824	EİEİ	34	1526.4	113.5
18-012	DSİ	20	1065	51.0
1805	EİEİ	52	4242.8	629.5
1806	EİEİ	36	8698.4	295.2
1817	EİEİ	22	1582.4	94.7
1818	EİEİ	26	13846	1175.9
1820	EİEİ	22	1440.8	154.6
1821	EİEİ	16	628.8	261.4

Çizelge 4.141. Seyhan Havzasına Ait Bilgiler

Seyhan havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.142 de verilmiştir. Bölge bütün olarak değerlendirildiğinde kritik Di değerine göre uyumsuz istasyon bulunmamaktadır. Heterojenlik testine göre havza homojen çıkmıştır. Fakat daha sonra yapılan araştırmada bölge tek olarak kabul edildiğinde ortalama debi ile havza karakteristikleri (alan, kot, eğim, vs.) arasında belirgin bir bağ kurulamamıştır. Bundan dolayı havza iki alt bölgeye ayrılmış ve her iki bölgede homojen olarak değerlendirilmiştir(Çizelge 4.143).

Bölge	İstasyon No	n (gözlem süresi)	Qort. (m ³ /s)	t	t ₃	t ₄	t ₅	Tüm Bölge için Di	Di
	18-008	27	2.8	0.2481	0.3089	0.2027	0.0630	1.05	0.90
	1801	56	198.4	0.2985	0.3120	0.2526	0.1726	1.73	1.07
Ð	1802	19	88.7	0.2122	0.2075	0.1548	0.0521	0.16	0.39
ölg	1804	20	44.2	0.2423	0.0889	0.0224	0.0308	0.81	1.10
ā.	1812	19	40.2	0.2360	0.1055	0.0687	0.0026	1.83	0.74
-	1822	22	80.7	0.1936	0.2859	0.2760	0.1522	0.37	1.63
	1823	17	48.7	0.3038	0.4110	0.2784	0.1372	0.63	1.10
	1824	34	113.5	0.3402	0.3042	0.1931	0.1340	1.31	1.08
	18-012	20	51.0	0.3326	0.2978	0.1266	0.0301	0.14	1.82
	1805	52	629.5	0.2818	0.2761	0.2608	0.1152	0.70	0.07
ge	1806	36	295.2	0.2620	0.3426	0.3188	0.2321	1.40	1.89
Böl	1817	22	94.7	0.2556	0.2347	0.2102	0.0370	0.83	0.55
Ň	1818	26	1175.9	0.2638	0.2330	0.2454	0.1679	1.69	0.62
	1820	22	154.6	0.3515	0.3570	0.2975	0.2055	1.47	1.72
	1821	16	261.4	0.2660	0.2667	0.2853	0.1519	0.89	0.31
Tün	n Bölge icin Ağırlık	dı bölgesel c	rtalama	0 2769	0 2773	0 2239		-	

Çizelge 4.142. Seyhan Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.144 de verilmiştir. Bu sonuçlara göre, tüm bölge için Genelleştirilmiş Lojistik ve Genelleştirilmiş Ekstrem Değer, 1.bölge için Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal ve pearson tip3 dağılımları, 2.bölge için ise Genelleştirilmiş Lojistik dağılımı uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.145 de verilmiştir.

Çizelge 4.145. Seynan Travzasının Heterojen	nik Olç	usu	
	Tüm		
HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	Bölge	1.Bölge	2.Bölge
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0413	0.0471	0.032
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0449	0.038	0.0443
Grup LCv lerinin Standart sapmasının simülasyonlarının			
standart sapması	0.0099	0.0108	0.0162
Standartlaştırılmış H(1) değerleri	-0.36	0.84	-0.76
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.0679	0.0912	0.0475
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1043	0.0913	0.1037
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0202	0.0241	0.0315
Standartlaştırılmış H(2) değerleri	-1.8	0	-1.79
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.0834	0.1	0.06
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.132	0.116	0.1309
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0247	0.0297	0.0397
Standartlaştırılmış H(3) değerleri	-1.96	-0.54	-1.79

Çizelge 4.143. Seyhan Havzasının Heterojenlik Ölçüsü

Çızeige 4.144. Oyguniuk 1esii Sonuçları (%90 Kabul edilebili düzeyde)								
	Tüm	Bölge	1.	Bölge	2.Bölge			
Dağılımlar	L-KURT	Z	L-KURT	Z	L-KURT	Z		
GEN. LOJISTIK	0.231	Z = -0.27 *	0.226	Z = 0.65 *	0.236	Z = -1.31 *		
GEN. EXTR. DEĞER	0.202	Z = -1.28 *	0.196	Z = -0.21 *	0.208	Z = -1.93		
GEN. NORMAL	0.183	Z = -1.92	0.179	Z = -0.69 *	0.188	Z = -2.36		
PEARSON TIP III	0.151	Z = -3.04	0.149	Z = -1.54 *	0.154	Z = -3.12		
GEN. PARETO	0.126	Z = -3.91	0.119	Z = -2.38	0.134	Z = -3.57		

Çizelge 4.144. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)

Çizelge 4.145. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

		ζ (yer	ALFA (ölçek	K (şekil		
Bölge	Dağılımlar	parametresi)	parametresi)	parametresi)		
	GEN. LOJISTIK	0.886	0.239	-0.267		
	GEN. EXTR. DEĞ	0.752	0.334	-0.146		
	GEN. NORMAL	0.874	0.421	-0.556		
1 Dölgo		MU	SIGMA	GAMMA		
1.Doige		(ortalama)	(St.Sap.)	(Çarpık.)		
	PEARSON TIP III	1	0.518	1.606		
		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.323	1.276	4.521	0.403	0.098
	GEN. LOJISTIK	0.870	0.247	-0.289		
2.Bölge		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.219	2.524	6.128	0.331	0.227

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.146 ve 4.147 de verilmiştir. Gözlenmiş değerler ve Çizelge 4. 146, 4.147 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.47, 4.48).

	bolg	gesel olasi	lik dagil	iminin	tekerr	ur tonk	csiyonu de	gerleri (1	.Bolge
y (Gumbel	T Dön.	Aşılmama							Göz.
azal. Değ.)	Per.	olasılığı	GLO	GEV	GNO	PE3	WAKEBY	у	Değer
-0.838	1.1111	0.1	0.488	0.489	0.488	0.486	0.472	-1.216	0.416
-0.476	1.25	0.2	0.608	0.598	0.591	0.577	0.593	-0.716	0.533
0.37	2	0.5	0.886	0.877	0.874	0.868	0.881	-0.241	0.653
1.5	5	0.8	1.287	1.311	1.325	1.349	1.306	0.239	0.840
2.25	10	0.9	1.601	1.641	1.660	1.688	1.644	0.744	1.027
2.97	20	0.95	1.957	1.993	2.005	2.017	2.006	1.235	1.190
4.6	100	0.99	3.047	2.940	2.874	2.757	2.946	1.710	1.381
5.3	200	0.995	3.674	3.418	3.285	3.069	3.398	2.190	1.616
6.91	1000	0.999	5.659	4.730	4.334	3.786	4.575	2.693	1.747
9.21	10000	0.9999	10.478	7.230	6.099	4.798	6.616	3.652	2.369

Çizelge 4.146. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)

bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölg							
y (Gumbel	T Dön.	Aşılmama				Göz.	
azal. Değ.)	Per.	olasılığı	GLO	WAKEBY	У	Değer	
-0.838	1.11111	0.1	0.468	0.450	-1.232	0.341	
-0.476	1.25	0.2	0.588	0.601	-0.729	0.499	
0.37	2	0.5	0.870	0.873	-0.240	0.669	
1.5	5	0.8	1.292	1.272	0.246	0.849	
2.25	10	0.9	1.629	1.630	0.747	0.995	
2.97	20	0.95	2.017	2.048	1.246	1.159	
4.6	100	0.99	3.240	3.314	1.718	1.341	
5.3	200	0.995	3.960	4.018	2.230	1.587	
6.91	1000	0.999	6.300	6.152	2.753	1.984	
9.21	10000	0.9999	12.234	10.935	3.447	2.470	
					4.151	2.654	
					4.813	3.202	

Çizelge 4.147. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge)

Şekil 4.47. Seyhan Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)

Şekil 4.48. Seyhan Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge) Çizelge 4.148. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)

T Dönüş	F	q(F)				
Periyodu	(Aşılmama	(Büyüme	RMSE	ŀ	Hata Bantlar	า
(Yıl)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.489	0.149	0.457	0.542	0.085
1.25	0.2	0.598	0.098	0.569	0.645	0.076
2	0.5	0.877	0.031	0.843	0.91	0.067
5	0.8	1.311	0.037	1.267	1.323	0.056
10	0.9	1.641	0.06	1.559	1.674	0.115
20	0.95	1.992	0.081	1.845	2.089	0.244
100	0.99	2.939	0.13	2.545	3.335	0.790
200	0.995	3.417	0.151	2.844	4.032	1.188
1000	0.999	4.729	0.204	3.652	6.169	2.517
10000	0.9999	7.23	0.289	4.969	11.08	6.111

Seyhan havzası 1.Bölge için en uygun dağılım, en küçük mutlak Z değerine sahip olan GEV, 2.bölge için ise GLO dağılımıdır. Bu dağılımlar kullanılarak, Monte Carlo simülasyon yöntemi ile bölgeler 500 kere simüle edilmiştir(NSIM=500). Bu bölgelere ait boyutsuz bölge büyüme oranları, bu oranların ortalama hataları ve hata bantları Çizelge 4.148 ve 4.149 de verilmiştir.

	0	, 0	~	0	<u> </u>	3
T Dönüş Periyodu	F (Aşılmama	q(F) (Büyüme	RMSE		Hata Bantl	arı
(Yıl)	Olasılığı)	Ēğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.468	0.127	0.412	0.54	0.128
1.25	0.2	0.588	0.089	0.53	0.656	0.126
2	0.5	0.87	0.044	0.811	0.926	0.115
5	0.8	1.292	0.026	1.25	1.321	0.071
10	0.9	1.629	0.045	1.549	1.717	0.168
20	0.95	2.017	0.072	1.842	2.227	0.385
100	0.99	3.24	0.143	2.667	4.105	1.438
200	0.995	3.96	0.176	3.124	5.342	2.218
1000	0.999	6.3	0.262	4.484	9.937	5.453
10000	0.9999	12.235	0.407	7.529	24.47	16.941

Çizelge 4.149. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GEV)

Seyhan havzası 1.bölge ve 2. bölge için alan-q, alan-Qort ilişkisi sırası ile Şekil 4.49 ve 4.50 deki gibidir. Seyhan havzasında alanı bilinen herhangi bir bölgenin ortalama debisi 1.bölge için (4.37) nolu formül yardımı ile, 2.bölge için ise (4.38) nolu formül yardımı ile hesaplanabilir.

$$\frac{Q}{A} = q = 0.652A^{-0.37} \Rightarrow \overline{Q} = 0.652A^{0.63}$$
 (1.Bölge) (4.37)

$$\overline{Q} = 0.0677 A + 75.807$$
 (2.Bölge) (4.38)

Seyhan havzasının 1. ve 2. bölgeleri için sırası ile GEV ve GLO dağılımının ters fonksiyonunda Çizelge 4.145 de verilmiş olan ζ , alfa ve k parametreleri ve yukarıdaki formüllerle hesaplanan ortalama debi değerleri yerine yazılırsa Seyhan havzasının 1. ve 2. bölgesi için gelebilecek taşkının büyüklüğü aşılmama olasılığına bağlı olarak (4.39) ve (4.40) nolu formül yardımı ile hesaplanabilir. Veya ortalama debi hesaplandıktan sonra GEV ve GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri (Çizelge 4.148, 4.149) ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -1.536 + 2.288 (-\log F)^{-0.146}$$
 (1.Bölge) (4.39)

$$\frac{Q}{\overline{Q}} = 0.015 + 0.855 \left(\frac{(1-F)}{F}\right)^{-0.289}$$
(2.Bölge) (4.40)

Şekil 4.49. Seyhan Havzasının Alan-q ilişkisi (1.Bölge)

Şekil 4.50. Seyhan Havzasının Alan-q ilişkisi (2.Bölge)

4.19. Asi Havzası

Asi havzasından toplam 8 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.150 de verilmiştir.

Çizelge 4.150. Asi Havzasina Alt Diighei									
İstasyon No	Gözlem Yapan Kurum	Gözlem Süresi (yıl)	Alan (km²)	Qort. (m ³ /s)					
19-004	DSİ	24	238.4	41.9					
19-006	DSİ	17	601	94.2					
19-009	DSİ	22	21734	535.9					
19-012	DSİ	16	501	63.4					
1905	EİE	48	1768	108.9					
1907	EİE	48	16170	139.2					
1908	EİE	30	22624.4	403.3					
1906	EİE	47	2764.4	241.8					

Cizelge 4.150. Asi Havzasına Ait Bilgiler

Asi havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.151 de verilmiştir. Çizelgeden de anlaşıldığı gibi uyumsuz istasyon bulunmamaktadır.

İstasyon	n (gözlem	Qort.					
No	süresi)	(m ³ /s)	t	t ₃	t_4	t ₅	Di
19-004	24	41.9	0.3065	0.2277	0.1334	0.0197	0.68
19-006	17	94.2	0.3060	0.1114	0.0681	0.0432	1.48
19-009	22	535.9	0.2010	0.0511	0.0899	0.0656	1.27
19-012	16	63.4	0.2043	0.1634	0.1781	0.0337	0.95
1905	48	108.9	0.2697	0.1615	0.2086	0.0749	1.01
1907	48	139.2	0.2096	0.0885	0.1864	0.1160	0.74
1908	30	403.3	0.2417	0.2086	0.2451	0.0972	0.67
1906	47	241.8	0.3287	0.3086	0.2075	0.1301	1.22
Ağırlıklı	bölgesel orta	lama	0.2565	0.1740	0.1796		

Çizelge 4.151. Asi Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

Çizelge 4.152 deki H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.153 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Lojistik ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Sıfıra en yakın Z değerine sahip Genelleştirilmiş Lojistik dağılım en uygun dağılım olarak kabul edilmiştir. Bu dağılımlara ait parametreler Çizelge 4.154 de görülmektedir.

Çizelge 4.152. Asi Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ(SİMÜLASYON SAYISI=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0411
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0331
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0093
Standartlaştırılmış H(1) değerleri	0.86
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.0805
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.0831
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0194
Standartlaştırılmış H(2) değerleri	-0.14
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.0862
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.102
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.023
Standartlaştırılmış H(3) değerleri	-0.69

GEN. LOJISTIK	L-BASIKLIK= 0.192	Z = 0.28 *
GEN. EKS. DEĞER	L-BASIKLIK= 0.152	Z = -1.15 *
GEN. NORMAL	L-BASIKLIK= 0.146	Z = -1.34 *
PEARSON TIP III	L-BASIKLIK= 0.132	Z = -1.84
GEN. PARETO	L-BASIKLIK= 0.063	Z = -4.30

Çizelge 4.153. Uygunluk Testi Sonuçları

<u>5</u> 88-			(/****		
Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	K (şekil parametresi)		
GEN. LOJISTIK	0.928	0.244	-0.174		
GEN. EKS. DEĞ.	0.785	0.368	-0.006		
GEN. NORMAL	0.92	0.431	-0.359		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.232	2.172	4.709	0.365	0.059

Çizelge 4.154. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.155 de verilmiştir. Gözlenmiş değerler ve Çizelge 4.155 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlenmiştir(Şekil 4.51).

Çizelge 4.155. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

	0		_			2	0	
y (Gumbel	T Dön.	Aşılmama						Göz.
azal. Değ.)	Per.	olasılığı	GLO	GEV	GNO	Wakeby	у	Değer
-0.838	1.111111	0.1	0.482	0.479	0.478	0.451	-1.233	0.281
-0.476	1.25	0.2	0.627	0.611	0.607	0.614	-0.732	0.474
0.37	2	0.5	0.928	0.920	0.920	0.934	-0.237	0.666
1.5	5	0.8	1.310	1.340	1.344	1.309	0.253	0.862
2.25	10	0.9	1.580	1.619	1.621	1.593	0.736	1.048
2.97	20	0.95	1.866	1.888	1.886	1.889	1.220	1.233
4.6	100	0.99	2.644	2.503	2.486	2.624	1.727	1.440
5.3	200	0.995	3.047	2.767	2.745	2.962	2.267	1.635
6.91	1000	0.999	4.189	3.383	3.359	3.804	2.770	1.944
9.21	10000	0.9999	6.488	4.275	4.280	5.155	3.569	2.173
							4.266	2.229
							4.910	2.880

Şekil 4.51. Asi Havzasına Ait Taşkın Frekans Eğrileri

Asi havzası için en uygun dağılım olan Genelleştirilmiş Lojistik dağılımı için boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla bölge 500 kere simüle edilmiştir(NSIM=500). Yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.156 da verilmiştir.

	0	0	0	0	5	/
T Dönüş Periyodu	F (Aşılmama	q(F) (Büyüme	RMSE (Ort. Hata)		Hata Bantlar	1
(11)	Olasiligi)	Egrisi)	,	95%	5%	Fark
1.1111111	0.1	0.482	0.164	0.423	0.562	0.139
1.25	0.2	0.627	0.091	0.578	0.684	0.106
2	0.5	0.928	0.027	0.891	0.964	0.073
5	0.8	1.31	0.035	1.262	1.342	0.08
10	0.9	1.58	0.054	1.501	1.651	0.15
20	0.95	1.866	0.073	1.73	1.998	0.268
100	0.99	2.644	0.118	2.299	3.048	0.749
200	0.995	3.047	0.139	2.561	3.631	1.07
1000	0.999	4.188	0.19	3.247	5.448	2.201
10000	0.9999	6.487	0.276	4.458	9.682	5.224

Çizelge 4.156. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Asi havzası için Alan-q ilişkisi Şekil 4.52 deki gibidir. Asi havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.41) nolu formül yardımı ile hesaplanabilir.

$$\frac{\overline{Q}}{A} = q = 2.02 A^{-0.435} \Rightarrow \overline{Q} = 2.02 A^{0.565}$$
 (4.41)

Asi havzasına en uygun olan GLO dağılımının ters fonksiyonunda yer alan ζ , alfa ve k parametreleri Çizelge 4.154 de görülmektedir. Bu değerler ve (4.41) nolu denklem yardımı ile hesaplanan \overline{Q} değeri yerine koyulursa aşılmama olasılığına karşı gelebilecek taşkının büyüklüğü GLO dağılımına göre hesaplanmış olacaktır(Eş.(4.42)). Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.474 + 1.402 \left(\frac{1-F}{F}\right)^{-0.174}$$
(4.42)

Şekil 4.52. Asi Havzasının Alan-q ilişkisi

4.20. Ceyhan Havzası

Ceyhan havzasından toplam 21 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.157 de verilmiştir.

Ceyhan havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.158 de verilmiştir. Bölge bütün olarak değerlendirildiğinde kritik Di değerine göre uyumsuz istasyon bulunmamaktadır. Heterojenlik testine göre havza heterojen çıkmıştır. Bundan dolayı havza iki alt bölgeye ayrılmış ve her iki bölgede homojen olarak hesaplanmıştır.

İstasyon	Gözlem Yapan	Gözlem	Alan	
No	Kurum	Süresi (yıl)	(km²)	Qort. (m ³ /s)
20-006	DSİ	18	174.9	54.4
20-036	DSİ	18	150.8	46.8
2001	EİEİ	50	8484	559.3
2006	EİEİ	46	739.2	52.4
2010	EİEİ	28	3498.8	296.2
2020	EİEİ	24	14708.4	1103.5
2004	EİEİ	20	20466	1117.1
2007	EİEİ	34	620	62.9
20-016	DSİ	27	291	25.1
20-013	DSİ	29	105.1	56.4
2008	EİEİ	30	444	155.9
20-002	DSİ	24	197.1	35.7
20-004	DSİ	25	178	39.1
20-005	DSİ	35	94.4	46.5
20-007	DSİ	26	2084.0	54.5
20-008	DSİ	25	131.1	40.9
2009	EİEİ	36	1387.2	94.7
2015	EİEİ	39	915.2	46.4
20-017	DSİ	20	1740	125.1
2022	EİEİ	18	428	73.2
2005	EIEİ	36	4202	108.0

Çizelge 4.157. Ceyhan Havzasına Ait Bilgiler

Çizelge 4.158. Ceyhan Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

je		n						Tüm	
ölç	İstasyon	(gözlem	0					Bölge	
В	No	süresi)	Qort. (m³/s)	t	t ₃	t_4	t ₅	için Di	Di
	20-006	18	54.4	0.2901	0.1962	0.1276	0.0483	0.53	0.64
	20-036	18	46.8	0.3049	0.1394	0.1066	0.0085	0.73	0.28
	2001	50	559.3	0.2680	0.2081	0.1691	0.0776	0.31	0.82
	2006	46	52.4	0.2956	0.1831	0.1510	0.0988	1.63	0.12
ge	2010	28	296.2	0.2609	0.2240	0.2325	0.0818	0.74	0.39
Зöl	2020	24	1103.5	0.2864	0.0129	0.0405	0.0460	0.67	1.58
1.E	2004	20	1117.1	0.2185	0.0951	0.2523	0.2006	1.15	0.89
	2007	34	62.9	0.2003	0.1836	0.3332	0.1247	1.53	1.44
	20-016	27	25.1	0.2611	0.1572	0.3037	0.1995	0.44	1.88
	20-013	29	56.4	0.3093	0.0859	0.0974	0.1032	0.86	0.87
	2008	30	155.9	0.3418	0.3105	0.2048	0.1458	1.26	2.09
	20-002	24	35.7	0.3299	0.3040	0.3292	0.1724	0.23	1.27
	20-004	25	39.1	0.4470	0.4049	0.2380	0.1652	1.50	0.28
	20-005	35	46.5	0.3948	0.3483	0.2100	0.1547	0.45	0.13
e	20-007	26	54.5	0.4001	0.4735	0.4285	0.3149	0.89	0.98
ölg	20-008	25	40.9	0.4053	0.3042	0.2312	0.2064	0.56	1.01
ã.	2009	36	94.7	0.3685	0.4205	0.3135	0.2470	1.32	0.99
2	2015	39	46.4	0.4218	0.4726	0.3891	0.2700	1.93	0.72
	20-017	20	125.1	0.4852	0.3380	0.1283	0.0028	1.27	1.32
	2022	18	73.2	0.4347	0.3357	0.1050	0.0118	1.85	1.10
	2005	36	108.0	0.2528	0.1880	0.1566	0.0448	1.14	2.19
Tür	n Bölge iç	in Ağırlıklı	bölgesel ortalama	0.3275	0.2604	0.2226			

Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.159 da verilmiştir. Bu sonuçlara göre, her iki bölge için de Genelleştirilmiş Lojistik ve Genelleştirilmiş Ekstrem Değer dağılımları uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.161 de verilmiştir.

Çizelge 4.159. Ceyhan Havzasının Heterojenlik Ölçüsü							
	Tüm						
HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	Bölge	1.Bölge	2.Bölge				
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0755	0.0384	0.0629				
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0503	0.0385	0.0586				
Grup LCv lerinin Standart sapmasının simülasyonlarının							
standart sapması	0.0092	0.0087	0.0166				
Standartlaştırılmış H(1) değerleri	2.75 **	-0.01	0.26				
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1329	0.0676	0.0931				
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1069	0.0923	0.113				
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.017	0.0187	0.0261				
Standartlaştırılmış H(2) değerleri	1.53 *	-1.32	-0.76				
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1404	0.0975	0.1211				
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1307	0.1122	0.1394				
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0203	0.0214	0.0334				
Standartlaştırılmış H(3) değerleri	0.48	-0.69	-0.55				

Çizelge 4.160. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)

Dağılımlar	1.Bölge		2.Bölge		
GEN. LOJISTIK	L-BASIKLIK= 0.191	Z = -0.05 *	L-BASIKLIK= 0.276	Z = -0.34 *	
GEN. EXTR. DEĞ.	L-BASIKLIK= 0.151	Z = -1.59 *	L-BASIKLIK= 0.255	Z = -0.90 *	
GEN. NORMAL	L-BASIKLIK= 0.146	Z = -1.77	L-BASIKLIK= 0.226	Z = -1.67	
PEARSON TIP III	L-BASIKLIK= 0.132	Z = -2.29	L-BASIKLIK= 0.177	Z = -2.99	
GEN. PARETO	L-BASIKLIK= 0.062	Z = -4.95	L-BASIKLIK= 0.190	Z = -2.65	

Çizelge 4.161.	Dağılımlara A	it Parametre	Гahminleri (%	690 Kabul ed	ilebilir düzeyde)

		۲ (ver	ALFA (ölcek	K (sekil		
Bölge	Dağılımlar	parametresi)	parametresi)	parametresi)		
	GEN. LOJISTIK	0.923	0.263	-0.172		
1 Bölgo	GEN. EXTR. DEĞ.	0.77	0.397	-0.003		
т.воіде		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.186	2.107	3.609	0.299	0.162
	GEN. LOJISTIK	0.784	0.309	-0.361		
2.Bölge	GEN. EXTR. DEĞ.	0.619	0.400	-0.278		
		ζ	ALFA	BETA	GAMMA	DELTA
	WAKEBY	0.136	1.405	4.242	0.438	0.265

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.162 ve 4.163 de verilmiştir. Gözlenmiş değerler ve Çizelge 4. 162, 4.163 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.53, 4.54).

Çizelge 4.162. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (1.Bölge)

y (Gumbel							
azal.	T Dön.	Aşılmama					Göz.
Değ.)	Per.	olasılığı	GLO	GEV	WAKEBY	у	Değer
-0.838	1.11	0.1	0.443	0.439	0.402	-1.210	0.409
-0.476	1.25	0.2	0.599	0.581	0.577	-0.717	0.599
0.37	2	0.5	0.923	0.915	0.941	-0.242	0.758
1.5	5	0.8	1.334	1.366	1.318	0.237	0.917
2.25	10	0.9	1.624	1.666	1.604	0.728	1.061
2.97	20	0.95	1.929	1.953	1.923	1.229	1.184
4.6	100	0.99	2.76	2.607	2.817	1.727	1.336
5.3	200	0.995	3.189	2.887	3.28	2.215	1.460
6.91	1000	0.999	4.401	3.537	4.578	2.702	1.636
9.21	10000	0.9999	6.83	4.472	7.137	3.411	1.789
						4.279	2.188
						4.827	1.875
						5.090	2.233

Çizelge 4.163. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (2.Bölge)

(2							
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	WAKEBY	v	Göz. Değer
-0.838	1.11	0.1	0.316	0.322	0.302	-1.231	0.203
-0.476	1.25	0.2	0.448	0.441	0.439	-0.741	0.370
0.37	2	0.5	0.784	0.774	0.783	-0.241	0.554
1.5	5	0.8	1.34	1.364	1.346	0.243	0.771
2.25	10	0.9	1.82	1.87	1.857	0.721	0.999
2.97	20	0.95	2.406	2.466	2.471	1.224	1.246
4.6	100	0.99	4.427	4.349	4.417	1.740	1.574
5.3	200	0.995	5.717	5.451	5.548	2.179	1.787
6.91	1000	0.999	10.3	8.993	9.132	2.674	2.078
9.21	10000	0.9999	23.775	17.792	17.815	3.766	2.677
						4.157	3.023

Şekil 4.53. Ceyhan Havzasına Ait Taşkın Frekans Eğrileri (1.Bölge)

Şekil 4.54. Ceyhan Havzasına Ait Taşkın Frekans Eğrileri (2.Bölge)

Ceyhan havzasındaki her iki bölge için de en uygun dağılım, en küçük mutlak Z değerine sahip olan GLO dağılımıdır. Bu dağılım kullanılarak, Monte Carlo simülasyon yöntemi ile bölgeler 500 kere simüle edilmiştir(NSIM=500). Bu bölgelere ait boyutsuz bölge büyüme oranları, bu oranların ortalama hataları ve hata bantları Çizelge 4.164 ve 4.165 de verilmiştir.

T Dönüş	F	q(F)		Hata Bantları		
Periyodu	(Aşılmama	(Büyüme	RMSE	0.50/		
(YII)	Olasiligi)	Egrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.443	0.181	0.384	0.493	0.109
1.25	0.2	0.599	0.096	0.553	0.639	0.086
2	0.5	0.923	0.025	0.886	0.95	0.064
5	0.8	1.334	0.035	1.296	1.361	0.065
10	0.9	1.624	0.054	1.56	1.69	0.130
20	0.95	1.929	0.072	1.814	2.055	0.241
100	0.99	2.76	0.111	2.464	3.147	0.683
200	0.995	3.188	0.128	2.773	3.751	0.978
1000	0.999	4.4	0.169	3.636	5.604	1.968
10000	0.9999	6.828	0.234	5.153	9.801	4.648

Çizelge 4.164. 1.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Çizelge 4.165. 2.Bölge için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

T Dönüş	F	q(F)				
Periyodu	(Aşılmama	(Büyüme	RMSE	F	lata Bantla	rı
(Yıl)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.316	0.348	0.238	0.341	0.103
1.25	0.2	0.448	0.196	0.373	0.486	0.113
2	0.5	0.784	0.069	0.71	0.83	0.120
5	0.8	1.34	0.04	1.287	1.371	0.084
10	0.9	1.82	0.067	1.75	1.908	0.158
20	0.95	2.406	0.096	2.251	2.654	0.403
100	0.99	4.427	0.163	3.883	5.568	1.685
200	0.995	5.718	0.192	4.825	7.675	2.850
1000	0.999	10.3	0.261	7.923	16.285	8.362
10000	0.9999	23.776	0.361	16.065	48.194	32.129

Ceyhan havzası 1.bölge ve 2. bölge için alan- Q_{ort} , alan-q ilişkisi sırası ile Şekil 4.55 ve 4.56 daki gibidir. Ceyhan havzasında alanı bilinen herhangi bir bölgenin ortalama debisi 1.bölge için (4.43) nolu formül yardımı ile, 2.bölge için ise (4.44) nolu formül yardımı ile hesaplanabilir.

$$\overline{Q} = 0.760 A^{0.74}$$
 (1.Bölge) (4.43)

$$\frac{\overline{Q}}{A} = q = 27.936 A^{-0.91} \Rightarrow 27.936 A^{0.09}$$
 (2.Bölge) (4.44)

Ceyhan havzasının 1. ve 2. bölgeleri için GLO dağılımının ters fonksiyonunda Çizelge 4.161 de verilmiş olan ζ, alfa ve k parametreleri ve yukarıdaki formüllerle hesaplanan ortalama debi değerleri yerine yazılırsa Ceyhan havzasının 1. ve 2. bölgesi için gelebilecek taşkının büyüklüğü aşılmama olasılığına bağlı olarak (4.45) ve (4.46) nolu formül yardımı ile hesaplanabilir. Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri (Çizelge 4.164, 4.165) ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.606 + 1.529 \left(\frac{(1-F)}{F}\right)^{-0.172}$$
(1.Bölge) (4.45)

$$\frac{Q}{\overline{Q}} = -0.072 + 0.856 \left(\frac{(1-F)}{F}\right)^{-0.361}$$
(2.Bölge) (4.46)

Şekil 4.55. Ceyhan Havzasının Alan-Qort ilişkisi (1.Bölge)

Şekil 4.56. Ceyhan Havzasının Alan-q ilişkisi (2.Bölge)

4.21. Fırat Havzası

Fırat havzasından toplam 42 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.166 da verilmiştir.

Fırat havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.167 de verilmiştir. Bölge bütün olarak değerlendirildiğinde kritik Di değerine göre 2123 ve 2165 nolu istasyonlar uyumsuz olarak tespit edilmiştir. Heterojenlik testine göre havza heterojen çıkmıştır. Bundan dolayı havza EİE nin hidrolojik olarak ayırdığı aşağı, orta ve yukarı Fırat olarak üç alt bölgede değerlendirilmiştir. Çizelge 4.167 den de görüldüğü gibi üç alt bölgede de uyumsuz istasyona rastlanmamıştır. Bu şekilde üç alt bölge olarak yapılan heterojenlik testinde üç bölgede homojen çıkmıştır (Çizelge 4.168).

	<u> </u>			0
İstasvon	Gözlem Yapan	Gözlem Süresi		Qort
No	Kurum	(vil)	Alan (km ²)	(m^{3}/s)
21-084	DSI	22	103.2	18.0
21-141	DSİ	16	230.3	22.7
21-148	DSİ	14	3000	165.1
2122	EİEİ	31	5882.4	543.5
21-074	DSİ	25	232	88.1
2164	EİEİ	30	2232	554.5
2102	EİEİ	23	25447.2	1971.7
2157	EİEİ	31	2098.4	250.6
2158	EİEİ	30	1577	281.5
21-085	DSİ	23	266.8	51.2
21-026	DSİ	20	128.4	6.2
21-081	DSİ	21	242.1	22.4
21-096	DSİ	17	725.9	37.3
21-101	DSİ	23	2047.8	36.8
21-133	DSİ	17	463.7	57.5
21-140	DSİ	15	238.4	9.7
2115	EİEİ	32	3990.4	530.4
2123/A	EİEİ	21	863.6	27.6
2131	EİEİ	43	277.6	30.9
2132	EİEİ	26	525.2	20.2
2160	EİEİ	20	1020	64.0
2165	EİEİ	21	490	70.0
21-001	DSİ	26	233.2	22.1
21-041	DSİ	22	2062	283.9
21-052	DSİ	27	127.8	18.4
21-099	DSİ	20	222.4	33.0
21-116	DSİ	22	271.6	22.0
21-132	DSİ	18	289	31.2
21-151	DSİ	14	77.2	8.1
21-152	DSİ	13	20687.6	948.1
2109	EİEİ	38	10356	485.0
2119	EİEİ	27	3284.8	547.1
2133	EİEİ	31	3604.4	549.5
2141	EİEİ	26	807.6	167.2
2147	EİEİ	34	8185.6	455.1
2151	EİEİ	26	2886	173.1
2154	EİEİ	33	15562	674.9
2156	EİEİ	31	5446	759.1
2166	EİEİ	21	4288	351.1
2167	EİEİ	21	44	7.3
2168	EİEİ	18	534	74.7
2149	EİEİ	26	1622.4	313.1

Çizelge 4.166. Fırat Havzasına Ait Bilgiler

ge		n						Tüm	
Böl	Istasyon	(gözlem	Qort.					Bölge	
	No	süresi)	(m [°] /s)	t	t ₃	t ₄	t ₅	için Di	Di
	21-084	22	18.0	0.2226	0.1448	0.1501	0.1196	0.27	0.68
	21-141	16	22.7	0.2889	0.3188	0.2185	0.0919	0.56	1.27
	21-148	14	165.1	0.2586	0.0983	0.1178	0.0370	0.95	1.00
rat	2122	31	543.5	0.2258	0.1018	0.1334	-0.0068	0.65	0.81
Ē	21-074	25	88.1	0.2794	0.2708	0.1465	0.0730	0.90	1.19
)rta	2164	30	554.5	0.2647	0.0958	0.0654	0.0700	0.82	0.38
0	2102	23	1971.7	0.2591	0.1408	0.0607	0.0250	0.75	1.30
	2157	31	250.6	0.2961	0.1121	0.0439	0.0223	1.01	0.60
	2158	30	281.5	0.3060	0.2700	0.1867	0.0836	0.06	0.96
	21-085	23	51.2	0.3608	0.2001	0.0576	-0.0031	1.00	1.82
	21-026	20	6.2	0.5130	0.5826	0.4122	0.3231	1.98	0.86
	21-081	21	22.4	0.3292	0.3045	0.2738	0.0345	0.36	1.85
	21-096	17	37.3	0.4008	0.3278	0.1286	0.0590	0.90	0.66
	21-101	23	36.8	0.4973	0.5629	0.3530	0.1957	1.52	0.97
rat	21-133	17	57.5	0.4808	0.4887	0.3591	0.1750	1.32	0.23
Ē	21-140	15	9.7	0.5723	0.4625	0.2314	0.1136	1.79	0.68
ağ	2115	32	530.4	0.3446	0.4168	0.3656	0.2628	1.03	1.17
Ąş	2123/A	21	27.6	0.4146	0.4120	0.1259	0.0196	3.13 *	2.02
	2131	43	30.9	0.5006	0.4768	0.2828	0.1518	0.89	0.06
	2132	26	20.2	0.5899	0.4259	0.1485	0.0366	2.51	1.31
	2160	20	64.0	0.4651	0.3189	0.0928	0.0317	1.46	0.93
	2165	21	70.0	0.5574	0.5584	0.4462	0.3473	3.82 *	1.28
	21-001	26	22.1	0.2340	0.2215	0.1962	-0.0111	0.22	0.09
	21-041	22	283.9	0.2698	0.3367	0.2981	0.1596	0.68	1.35
	21-099	20	18.4	0.1871	0.1779	0.2803	0.0904	1.40	1.87
	21-116	22	33.0	0.2500	0.2469	0.2550	0.0518	0.35	0.57
	21-132	18	22.0	0.2074	0.0937	0.1487	0.0081	0.78	0.73
	21-151	14	31.2	0.3689	0.2160	0.1148	0.0245	0.61	2.33
	21-152	13	8.1	0.2042	0.3225	0.3050	0.1237	1.61	1.25
	2109	38	948.1	0.2098	0.1636	0.2129	0.0552	0.53	0.36
Irat	2119	27	485.0	0.2278	0.2185	0.2049	0.1053	0.24	0.05
ЦЦ. 	2133	31	547.1	0.2245	0.1314	0.2001	0.0698	0.99	0.91
ƙar	2141	26	549.5	0.2136	0.1550	0.1547	0.0553	0.26	0.39
Υn	2147	34	167.2	0.2003	0.0954	0.1643	0.0885	0.89	0.80
	2151	26	455.1	0.2370	0.1989	0.1477	0.1122	0.32	0.70
	2154	33	173.1	0.2075	0.2058	0.1561	0.0649	0.73	1.36
	2156	31	674.9	0.2038	0.1416	0.1777	0.0827	0.41	0.30
	2166	21	759.1	0.2472	0.1254	0.0985	0.0229	0.42	1.00
	2167	21	351.1	0.3801	0.3003	0.1707	0.0804	0.19	2.60
	2168	18	7.3	0.1858	0.2938	0.2466	0.1142	1.97	1.70
	21-052	27	74.7	0.2495	0.3496	0.2841	0.1262	1.28	1.18
	2149	26	313.1	0.2682	0.1435	0.1384	0.0730	0.45	0.47
Tür	m Bölge iç	in Ağırlıklı	bölgesel						
	0	rtalama	-	0.3087	0.2597	0.1968			

Çizelge 4.167. Fırat Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.169 da verilmiştir. Bu sonuçlara göre, Orta Fırat havzasına Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal dağılım ve Pearson Tip 3 dağılımı, Aşağı Fırat havzasına Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer, Genelleştirilmiş Normal ve Genelleştirilmiş Pareto dağılımları, Yukarı Fırat havzasına Genelleştirilmiş Lojistik dağılım uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.170 de verilmiştir.

		5		
	Tüm	Orta	Aşağı	Yukarı
HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	Bölge	Fırat	Firat	Fırat
Gözlenen değerlerin Grup LCv lerinin Standart				
sapmasi	0.115	0.0385	0.0819	0.045
Grup LCv lerinin Standart sapmasının Simülasyon				
ortalamaları	0.0488	0.0331	0.0689	0.039
Grup LCv lerinin Standart sapmasının				
simülasyonlarının standart sapması	0.0056	0.0078	0.0164	0.0065
Standartlaştırılmış H(1) değerleri	11.85 **	0.7	0.79	0.92
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1571	0.0818	0.1103	0.0742
Ortalama LCv/LCs mesafesinin simülasyon				
ortalaması	0.1056	0.0783	0.1179	0.1033
Ortalama LCv/LCs mesafesinin simülasyon standart				
sapması	0.0111	0.0163	0.0247	0.0163
Standartlaştırılmış H(2) değerleri	4.64 **	0.22	-0.31	-1.78
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1458	0.0891	0.1277	0.0819
Ortalama LCs/LCk mesafesinin simülasyon				
ortalaması	0.1314	0.0977	0.1518	0.1294
Ortalama LCs/LCk mesafesinin simülasyon standart				
sapması	0.0132	0.0179	0.0317	0.0188
Standartlaştırılmış H(3) değerleri	1.09 *	-0.48	-0.76	-2.52

Çizelge 4.168. Fırat Havzasının Heterojenlik Ölçüsü

Çizelge 4.169. Uygunluk Testi Sonuçları (%90 Kabul edilebilir düzeyde)

	Ort	a Fırat	Aşa	ğı Fırat	Yukarı Fırat	
Dağılımlar	L-KURT	Z	L-KURT	Z	L-KURT	Z
GEN. LOJISTIK	0.191	Z = 3.35	0.333	Z = 0.70 *	0.200	Z = -0.21 *
GEN. EXTR. DEĞ.	0.150	Z = 1.62 *	0.320	Z = 0.39 *	0.162	Z = -1.82
GEN. NORMAL	0.146	Z = 1.41 *	0.282	Z = -0.53 *	0.154	Z = -2.19
PEARSON TIP III	0.132	Z = 0.83 *	0.217	Z = -2.09	0.136	Z = -2.95
GEN. PARETO	0.062	Z = -2.17	0.266	Z = -0.91 *	0.077	Z = -5.49

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.171, 4.172, ve 4.173 de verilmiştir. Gözlenmiş değerler ve bu çizelgelerdeki dağılımlara ait değerler kullanılarak taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.57, 4.58, 4.59).

	ilge						
	BG		ζ (yer	ALFA (ölçek	K (şekil		
		Dağılımlar	parametresi)	parametresi)	parametresi)		
		GEN. EXTR. DEĞ.	0.77	0.398	-0.002		
	t	GEN. NORMAL	0.916	0.465	-0.352		
	Ira			SIGMA	GAMMA		
	аБ	MU	(ortalama)	(St.Sap.)	(Çarpık.)		
	Ort	PEARSON TÌP III	1	0.506	1.037		
	•		ζ	ALFA	BETA	GAMMA	DELTA
		WAKEBY	0.254	1.201	4.802	0.644	-0.194
ſ		GEN. LOJISTIK	0.687	0.33	-0.447		
	rat	GEN. EXTR. DEĞ	0.518	0.402	-0.391		
	Ē	GEN. NORMAL	0.654	0.565	-0.964		
	ağ	GEN. PARETO	0.171	0.633	-0.236		
	Ąş		ζ	ALFA	BETA	GAMMA	DELTA
		WAKEBY	0	17.649	97.798	0.619	0.247
	t n	GEN. LOJISTIK	0.925	0.219	-0.199		
-	uka Fira		ζ	ALFA	BETA	GAMMA	DELTA
2	≻╙	WAKEBY	0.268	2.908	7.542	0.381	0.028

Çizelge 4.170. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Çizelge	4.171.	Dönüş	periyotlar	ina	karşılık	boyutsuz	z verilere	uydurulan	ortak
		bölgese	l olasılık	dağ	liminin	tekerrür	fonksiyonu	ı değerleri	(Orta
		Firat)							

	Inut)						
y (Gumbel azal.	T Dön.	Aşılmama						Göz.
Değ.)	Per.	olasılığı	GEV	GNO	PE3	WAKEBY	у	Değer
-0.838	1.11	0.1	0.438	0.436	0.433	0.420	-1.218	0.345
-0.476	1.25	0.2	0.580	0.577	0.569	0.559	-0.723	0.478
0.37	2	0.5	0.916	0.916	0.914	0.912	-0.240	0.647
1.5	5	0.8	1.367	1.371	1.381	1.394	0.237	0.850
2.25	10	0.9	1.667	1.669	1.679	1.700	0.738	1.069
2.97	20	0.95	1.954	1.952	1.954	1.967	1.248	1.298
4.6	100	0.99	2.607	2.591	2.543	2.465	1.741	1.526
5.3	200	0.995	2.886	2.866	2.783	2.636	2.227	1.673
6.91	1000	0.999	3.534	3.516	3.321	2.955	2.669	1.776
9.21	10000	0.9999	4.462	4.488	4.059	3.269	3.311	1.908
							4.325	2.133

	_	Firat)							
y (Gumbel	т								
azal.	Dön.	Aşılmama							Göz.
Değ.)	Per.	olasılığı	GLO	GEV	GNO	GPA	WAKEBY	у	Değer
-0.838	1.11	0.1	0.225	0.232	0.238	0.238	0.247	-1.212	0.167
-0.476	1.25	0.2	0.346	0.343	0.328	0.316	0.322	-0.725	0.292
0.37	2	0.5	0.687	0.676	0.654	0.648	0.648	-0.238	0.416
1.5	5	0.8	1.320	1.338	1.386	1.411	1.403	0.237	0.566
2.25	10	0.9	1.920	1.968	2.083	2.109	2.099	0.735	0.819
2.97	20	0.95	2.703	2.774	2.927	2.931	2.924	1.242	1.193
4.6	100	0.99	5.712	5.703	5.582	5.449	5.484	1.726	1.656
5.3	200	0.995	7.825	7.646	7.081	6.866	6.940	2.226	2.153
6.91	1000	0.999	16.160	14.807	11.581	11.206	11.456	2.716	2.543
9.21	10000	0.9999	45.384	37.192	21.172	21.127	21.996	3.616	3.767
								4.116	4.431
								4.659	5.028

Çizelge 4.172. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (Aşağı Fırat)

Çizelge 4.173. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri (Yukarı Fırat)

y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	WAKEBY	У	Göz. Değer
-0.838	1.11	0.1	0.534	0.519	-1.199	0.412
-0.476	1.25	0.2	0.659	0.667	-0.721	0.573
0.37	2	0.5	0.925	0.918	-0.248	0.732
1.5	5	0.8	1.275	1.280	0.245	0.881
2.25	10	0.9	1.530	1.559	0.745	1.037
2.97	20	0.95	1.803	1.844	1.235	1.190
4.6	100	0.99	2.574	2.526	1.743	1.368
5.3	200	0.995	2.984	2.830	2.228	1.543
6.91	1000	0.999	4.181	3.559	2.747	1.737
9.21	10000	0.9999	6.714	4.661	3.451	1.836
					4.255	2.212
					4.598	2.045

Şekil 4.57. Orta Fırat Havzasına Ait Taşkın Frekans Eğrileri

Şekil 4.58. Aşağı Fırat Havzasına Ait Taşkın Frekans Eğrileri

Şekil 4.59. Yukarı Fırat Havzasına Ait Taşkın Frekans Eğrileri

			-		_	-
T Dönüş	F	q(F)				
Periyodu	(Aşılmama	(Büyüme	RMSE	Hata Bantları		
(Yıl)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.433	0.189	0.377	0.484	0.107
1.25	0.2	0.569	0.109	0.522	0.614	0.092
2	0.5	0.914	0.026	0.879	0.946	0.067
5	0.8	1.381	0.037	1.341	1.411	0.070
10	0.9	1.679	0.058	1.600	1.752	0.152
20	0.95	1.954	0.073	1.829	2.083	0.254
100	0.99	2.543	0.098	2.299	2.815	0.516
200	0.995	2.783	0.106	2.491	3.120	0.629
1000	0.999	3.322	0.122	2.917	3.818	0.901
10000	0.9999	4.060	0.138	3.485	4.811	1.326

Çizelge 4.174. Orta Fırat için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (PE3)

Orta Fırat havzası için en uygun dağılım, en küçük mutlak Z değerine sahip olan PE3, Aşağı Fırat için GEV, Yukarı Fırat için ise GLO dağılımıdır. Bu dağılımlar kullanılarak, Monte Carlo simülasyon yöntemi ile bölgeler 500 kere simüle edilmiştir(NSIM=500). Bu bölgelere ait boyutsuz bölge büyüme oranları, bu oranların ortalama hataları ve hata bantları Çizelge 4.174, 4.175 ve 4.176 da verilmiştir.

Çizelge 4.175.	Aşağı Fırat	için Bölgesel	Büyüme	Eğrisinin	Doğruluk	Ölçüleri
	(GEV)					

	(021)					
T Dönüş	F	q(F)	DMOE		Hat	a Bantları
Periyodu	(Aşıımama	(Buyume	RMSE			
(Ýil)	Olasılığı)	Ēğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.232	0.635	0.144	0.232	0.088
1.25	0.2	0.343	0.303	0.266	0.37	0.104
2	0.5	0.676	0.112	0.578	0.717	0.139
5	0.8	1.338	0.057	1.236	1.358	0.122
10	0.9	1.968	0.07	1.877	2.011	0.134
20	0.95	2.774	0.099	2.62	3.028	0.408
100	0.99	5.703	0.179	5.08	7.654	2.574
200	0.995	7.645	0.216	6.648	11.326	4.678
1000	0.999	14.806	0.306	12.136	27.936	15.800
10000	0.9999	37.19	0.435	28.174	102.357	74.183

	(ULU)					
T Dönüş	F	q(F)		Hata Bantları		
Periyodu	(Aşılmama	(Büyüme	RMSE			
(Yıl)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.534	0.188	0.484	0.544	0.060
1.25	0.2	0.659	0.108	0.621	0.673	0.052
2	0.5	0.925	0.024	0.898	0.944	0.046
5	0.8	1.275	0.043	1.251	1.291	0.040
10	0.9	1.529	0.069	1.487	1.567	0.080
20	0.95	1.803	0.092	1.722	1.877	0.155
100	0.99	2.573	0.136	2.337	2.828	0.491
200	0.995	2.983	0.153	2.657	3.365	0.708
1000	0.999	4.180	0.193	3.505	5.028	1.523
10000	0.9999	6.712	0.250	5.114	8.990	3.876

Çizelge 4.176.Yukarı Fırat için Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Orta Fırat, Aşağı Fırat, Yukarı Fırat havzaları için alan-ortalama debi ilişkisi sırası ile Şekil 4.60, 4.61 ve 4.62 deki gibidir. Fırat havzasında alanı bilinen herhangi bir bölgenin ortalama debisi aşağıdaki formüller ile hesaplanabilir.

$$\overline{Q} = 0.638 A^{0.79}$$
 (Orta Firat) (4.47)

$$\overline{Q} = 0.005 A^{1.39}$$
 (Aşağı Fırat) (4.48)

$$\overline{Q} = 0.2972 A^{0.8521}$$
 (Yukarı Fırat) (4.49)

Orta Fırat havzasına uyan PE3 dağılımının ters fonksiyonu analitik olarak verilememektedir. Aşağı ve Yukarı Fırat havzalarına uyan GEV ve GLO dağılımlarının ters fonksiyonunda Çizelge 4.170 de verilmiş olan ζ , alfa ve k parametreleri ve yukarıdaki formüllerle hesaplanan ortalama debi değerleri yerine yazılırsa bu havzalar için gelebilecek taşkının büyüklüğü aşılmama olasılığına bağlı olarak (4.50) ve (4.51) nolu formül yardımı ile hesaplanabilir. Veya üç havza içinde ortalama debi hesaplandıktan sonra q(F) büyüme eğrisi değerleri (Çizelge 4.174, 4.175, 4.176) ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.510 + 1.028 (-\log F)^{-0.391}$$
 (Aşağı Fırat) (4.50)

$$\frac{Q}{\overline{Q}} = -0.176 + 1.101 \left(\frac{(1-F)}{F}\right)^{-0.199}$$
(Yukarı Fırat) (4.51)

Şekil 4.60. Orta Fırat Havzasının Alan-Qort ilişkisi

Şekil 4.61. Aşağı Fırat Havzasının Alan-Qort ilişkisi

Şekil 4.62. Yukarı Fırat Havzasının Alan-Qort ilişkisi

4.22. Doğu Karadeniz Havzası

Doğu Karadeniz havzasından toplam 26 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.177 de verilmiştir.

Doğu Karadeniz havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.178 de verilmiştir. Çizelgeden de anlaşıldığı gibi uyumsuz istasyon bulunmamaktadır.

Çizelge 4.179 daki H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.180 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Lojistik dağılım bölgeye uygun bulunmuştur. Bu dağılıma ve Wakeby dağılımına ait parametreler Çizelge 4.181 de görülmektedir.

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.182 de verildi. Gözlenmiş değerler ve Çizelge 4.182 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.63).

İstasyon	Gözlem Yapan	Gözlem Süresi	_	Qort.
No	Kurum	(yıl)	Alan (km ²)	(m ³ /s)
22-002	DSİ	26	436.4	224.0
22-006	DSİ	19	151.5	99.5
22-007	DSİ	22	153.5	25.5
22-009	DSİ	23	1902.7	129.4
22-013	DSİ	17	126.5	28.0
22-034	EİEİ	12	254.7	45.8
22-040	EİEİ	13	3138	260.0
22-052	EİEİ	12	568.4	101.3
22-053	EİEİ	12	180.5	51.0
22-055	EİEİ	11	1453	206.7
22-056	DSİ	11	274	69.7
22-058	DSİ	10	167.4	73.0
22-059	EİEİ	10	125.6	18.4
22-064	DSİ	11	384.4	86.2
2201	EİEİ	40	2750	260.3
2202	EİEİ	34	608.8	99.0
2206	EİEİ	30	737.2	92.5
2213	EİEİ	38	713	127.2
2215	EİEİ	26	445.2	89.4
2218	EİEİ	37	855.3	171.4
2228	EİEİ	28	219.6	64.6
2232	EİEİ	36	940	176.2
2233	EİEİ	36	249.2	43.9
2238	EİEİ	35	1024.4	160.4
2245	EİEİ	31	232.8	260.2
2247	EİEİ	30	1859.2	447.6

Çizelge 4.177. Doğu Karadeniz Havzasına Ait Bilgiler

lata aura c	n (alialari	Oart					
Istasyon	(goziem süresi)	QOIT. (m ³ /s)	τ	τ.	τ.	τ.	Di
22-002	26	224.0	0.2013	0.0211	0 1006	0.0300	1 37
22-002	10	224.0	0.2015	0.0211	0.1000	0.0303	1.37
22-000	22	99.J 25.5	0.2093	0.4030	0.3302	0.2007	1.22
22-007	22	20.0	0.1044	0.0010	0.1700	0.1321	0.00
22-009	23	129.4	0.2606	0.2752	0.2536	0.1013	0.23
22-013	17	28.0	0.2690	0.3896	0.3586	0.1891	0.93
22-034	12	45.8	0.1818	0.3025	0.2934	0.0848	0.47
22-040	13	260.0	0.1421	0.1710	0.1707	0.0080	1.68
22-052	12	101.3	0.1714	0.1735	0.1897	0.0581	0.63
22-053	12	51.0	0.1800	0.0936	0.2318	0.0471	1.71
22-055	11	206.7	0.2815	0.2026	0.1724	0.0796	0.60
22-056	11	69.7	0.2091	0.2803	0.3779	0.1543	2.05
22-058	10	73.0	0.2733	0.3001	0.1868	0.0238	0.60
22-059	10	18.4	0.2186	0.4936	0.4390	0.1019	1.62
22-064	11	86.2	0.2233	0.3160	0.2910	0.0293	0.11
2201	40	260.3	0.2759	0.2551	0.2034	0.1248	0.31
2202	34	99.0	0.2275	0.2715	0.2325	0.1124	0.04
2206	30	92.5	0.2307	0.3432	0.2924	0.1701	0.16
2213	38	127.2	0.2871	0.3167	0.2569	0.1346	0.47
2215	26	89.4	0.1572	0.1848	0.2540	0.1250	0.79
2218	37	171.4	0.2541	0.4308	0.2736	0.1269	1.32
2228	28	64.6	0.3168	0.2165	0.1352	0.0712	1.31
2232	36	176.2	0.2071	0.4739	0.3889	0.2434	1.43
2233	36	43.9	0.1356	0.1888	0.1566	0.0552	2.58
2238	35	160.4	0.2554	0.1484	0.1152	0.0713	0.65
2245	31	260.2	0.3114	0.2466	0.1239	0.0340	1.36
2247	30	447.6	0.2844	0.2547	0.1475	0.0330	0.80
Ağırlıklı bölgesel ortalama			0.2368	0.266	0.2284		

Çizelge 4.178. Doğu Karadeniz Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

Çizelge 4.179. Doğu Karadeniz Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)					
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0513				
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0447				
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0086				
Standartlaştırılmış H(1) değerleri	0.76				
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1106				
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1132				
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.016				
Standartlaştırılmış H(2) değerleri	-0.16				
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1248				
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.146				
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0195				
Standartlaştırılmış H(3) değerleri	-1.08				

Çizelge 4.180. Oygunluk Testi Sonuçian						
GEN. LOJISTIK	L-BASIKLIK= 0.226	Z = -0.97 *				
GEN. EXTR. DEĞER	L-BASIKLIK= 0.195	Z = -2.23				
GEN. NORMAL	L-BASIKLIK= 0.178	Z = -2.94				
PEARSON TÌP III	L-BASIKLIK= 0.148	Z = -4.18				
GEN. PARETO	L-BASIKLIK= 0.118	Z = -5.44				

Çizelge 4.180. Uygunluk Testi Sonuçları

Çizelge 4.181. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Dağılımlar	ζ (yer parametresi)	ALFA (ölçek parametresi)	K (şekil parametresi)		
GEN. LOJISTIK	0.900	0.210	-0.266		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.322	2.558	7.818	0.337	0.13

Çizelge 4.182. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

	U		0		1 0	
y (Gumbel	T Dön.	Aşılmama				Göz.
azal. Değ.)	Per.	olasılığı	GLO	WAKEBY	у	Değer
-0.838	1.11	0.1	0.550	0.542	-1.188	0.472
-0.476	1.25	0.2	0.656	0.669	-0.716	0.568
0.37	2	0.5	0.900	0.893	-0.241	0.714
1.5	5	0.8	1.252	1.253	0.238	0.847
2.25	10	0.9	1.527	1.554	0.732	0.996
2.97	20	0.95	1.839	1.884	1.235	1.157
4.6	100	0.99	2.792	2.775	1.727	1.374
5.3	200	0.995	3.339	3.221	2.196	1.515
6.91	1000	0.999	5.070	4.423	2.694	1.727
9.21	10000	0.9999	9.263	6.646	3.253	2.101
					3.670	2.114
					4.348	2.372
					4.643	2.636

Şekil 4.63. Doğu Karadeniz Havzasına Ait Taşkın Frekans Eğrileri

çızenge 1.105. Dongeser Duyune Egrisinin Doğrunak Ölçuleri (OLO)							
T Dönüş Dorivodu	F	q(F)	DMCE		Hata Bantlar	1	
Fenyodu	(Aşılmama	(Биуитте	RIVISE			-	
(Yıl)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark	
1.111111	0.1	0.550	0.147	0.533	0.603	0.070	
1.25	0.2	0.656	0.095	0.635	0.700	0.065	
2	0.5	0.900	0.027	0.870	0.922	0.052	
5	0.8	1.252	0.038	1.212	1.247	0.035	
10	0.9	1.527	0.063	1.455	1.539	0.084	
20	0.95	1.839	0.085	1.713	1.891	0.178	
100	0.99	2.792	0.131	2.468	3.071	0.603	
200	0.995	3.340	0.149	2.892	3.795	0.903	
1000	0.999	5.071	0.191	4.208	6.280	2.072	
10000	0.9999	9.266	0.250	7.183	13.284	6.101	

Çizelge 4.183. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Doğu Karadeniz havzası için en uygun dağılım olan Genelleştirilmiş Lojistik dağılımı için boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla bölge 500 kere simüle edilmiştir(NSIM=500). Yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.183 de verilmiştir.

Doğu Karadeniz havzası için Alan-Q_{ort} ilişkisi Şekil 4.64 deki gibidir. Doğu Karadeniz havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.52) nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 2.0106 \mathbf{A}^{0.6324}$$
 (4.52)

Doğu Karadeniz havzasına en uygun olan GLO dağılımının ters fonksiyonunda yer alan ζ , alfa ve k parametreleri Çizelge 4.181 de görülmektedir. Bu değerler ve (4.52) nolu denklem yardımı ile hesaplanan \overline{Q} değeri yerine koyulursa aşılmama olasılığına karşı gelebilecek taşkının büyüklüğü GLO dağılımına göre hesaplanmış olacaktır(Eş.(4.53)). Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = 0.111 + 0.789 \left(\frac{1-F}{F}\right)^{-0.266}$$
(4.53)

Şekil 4.64. Doğu Karadeniz Havzasının Alan-q ilişkisi

Doğu Karadeniz havzasının Alan-Q_{ort} ilişkisi için yapılan regresyon analizi sonuçları Çizelge 4.184 de verilmiştir.

Regresyon İstat	istikleri	_			
Çoklu R	0.781324				
R Kare	0.610467				
Ayarlı R Kare	0.594236				
Standart Hata	0.504466				
Gözlem	26				
	df	SS	MS	F	Anlamlılık F
Regresyon	1	9.571764	9.57176365	37.61217	2.46E-06
Fark	24	6.107659	0.2544858		
Toplam	25	15.67942			_
	Katsayılar	Standart Hata	t Stat	P-değeri	
Kesişim	0.698427	0.644107	1.08433351	0.28899	
X Değişkeni 1	0.632426	0.103121	6.13287629	2.46E-06	_

Çizelge 4.184. Regresyon analizi sonuçları

4.23. Çoruh Havzası

Çoruh havzasından toplam 12 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.185 de verilmiştir.

Çoruh havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.186 da verilmiştir. Çizelgeden de anlaşıldığı gibi uyumsuz istasyon bulunmamaktadır.

İstasyon	Gözlem Yapan	Gözlem Süresi		Qort.
No	Kurum	(yıl)	Alan (km ²)	(m³/s)
23-003	DSİ	27	175	21.1
23-006	DSİ	25	189.9	6.0
23-010	DSİ	18	18545	891.1
23-016	DSİ	25	481.2	32.8
2304	EİEİ	38	1734	102.4
2305	EİEİ	37	7272	385.6
2315	EİEİ	35	19654	1093.5
2316	EİEİ	35	5505.2	249.4
2320	EİEİ	20	4759.2	173.4
2321	EİEİ	19	586	74.1
2322	DSİ	19	18326	902.4
2323	DSİ	35	6854	240.3

Çizelge 4.185. Çoruh Havzasına Ait Bilgiler

Çizelge 4.186. Çoruh Havzasındaki İstasyonların L-moment Oranları ve Uyumsuzluk Ölçüsü

			3	1	1		
lataovan	n (aözlom	Oort					
istasyon	(goziem						
No	süresi)	(m³/s)	t	t ₃	t_4	t ₅	Di
23-003	27	21.1	0.2157	0.1804	0.2428	0.1283	1.07
23-006	25	6.0	0.2578	0.1701	0.1985	0.1404	1.49
23-010	18	891.1	0.1721	0.1307	0.1647	0.0726	0.48
23-016	25	32.8	0.2348	0.3128	0.2153	0.0315	1.17
2304	38	102.4	0.2395	0.1969	0.1352	0.0375	0.71
2305	37	385.6	0.1794	0.1383	0.1461	0.0503	0.52
2315	35	1093.5	0.1833	0.2519	0.1852	0.0780	0.77
2316	35	249.4	0.2051	0.1681	0.1109	0.0476	1.05
2320	20	173.4	0.2250	0.1526	0.1416	0.0365	0.46
2321	19	74.1	0.1268	0.1061	0.2249	0.0453	2.15
2322	19	902.4	0.1848	0.3199	0.2640	0.1025	1.82
2323	35	240.3	0.2169	0.1860	0.2109	0.0812	0.31
	Ağırlıklı bölgesel ortalama				0.1929	0.181	

Çizelge 4.187 deki H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.188 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4. 190 de görülmektedir.

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)					
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0318				
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0299				
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0066				
Standartlaştırılmış H(1) değerleri	0.28				
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.0566				
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.0879				
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0186				
Standartlaştırılmış H(2) değerleri	-1.69				
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.0674				
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1126				
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0219				
Standartlaştırılmış H(3) değerleri	-2.06				

Çizelge 4.187. Çoruh Havzasının Heterojenlik Ölçüsü

Çizelge 4.188. Uygunluk Testi Sonuçları

GEN. LOJISTIK	L-BASIKLIK= 0.198	Z = 0.45 *
GEN. EXTR. DEĞER	L-BASIKLIK= 0.160	Z = -1.09 *
GEN. NORMAL	L-BASIKLIK= 0.152	Z = -1.40 *
PEARSON TÌP III	L-BASIKLIK= 0.135	Z = -2.08
GEN. PARETO	L-BASIKLIK= 0.073	Z = -4.56

Çizelge 4.189. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

	ζ (yer	ALFA (ölçek	K (şekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
GEN. LOJISTIK	0.936	0.194	-0.193		
GEN. EXTR. DEĞER	0.824	0.287	-0.036		
GEN. NORMAL	0.929	0.342	-0.398		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.371	2.26	7.187	0.356	-0.008

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.190 da verildi. Gözlenmiş değerler ve Çizelge 4.190 da verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.65).

	bolgeset blashik daginininin tekentur fonksiyonu degeneri							
y (Gumbel azal. Değ.)	T Dön. Per.	Aşılmama olasılığı	GLO	GEV	GNO	WAKEBY	у	Göz. Değer
-0.838	1.11	0.1	0.589	0.588	0.586	0.575	-1.243	0.478
-0.476	1.25	0.2	0.700	0.688	0.685	0.701	-0.725	0.632
0.37	2	0.5	0.936	0.93	0.929	0.929	-0.231	0.757
1.5	5	0.8	1.243	1.266	1.271	1.255	0.248	0.897
2.25	10	0.9	1.466	1.497	1.501	1.498	0.736	1.040
2.97	20	0.95	1.703	1.724	1.723	1.739	1.226	1.179
4.6	100	0.99	2.367	2.259	2.238	2.295	1.710	1.319
5.3	200	0.995	2.718	2.497	2.465	2.532	2.179	1.477
6.91	1000	0.999	3.736	3.072	3.009	3.077	2.721	1.570
9.21	10000	0.9999	5.864	3.953	3.845	3.844	3.527	1.752
							4.225	2.186
							4.628	1.998

Çizelge 4.190. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.65. Çoruh Havzasına Ait Taşkın Frekans Eğrileri

		ber Buyanne Egrisin	in Dogranan	orgaierr	(\mathbf{OLO})	
T Dönüş	F (Aşılmama	q(F) (Büyüme	RMSE	Ha	ta Bantl	arı
Periyodu (Yıl)	Ólasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.589	0.121	0.537	0.655	0.118
1.25	0.2	0.700	0.079	0.654	0.756	0.102
2	0.5	0.936	0.029	0.900	0.978	0.078
5	0.8	1.244	0.034	1.205	1.271	0.066
10	0.9	1.466	0.059	1.382	1.532	0.150
20	0.95	1.703	0.085	1.551	1.834	0.283
100	0.99	2.368	0.152	1.933	2.782	0.849
200	0.995	2.719	0.185	2.124	3.336	1.212
1000	0.999	3.736	0.276	2.604	5.104	2.500
10000	0.9999	5.864	0.445	3.361	9.489	6.128

			••
C ' 1 1 101	D ·· 1 1 D ·· ··	\mathbf{T}	$\alpha_1 \cdots \alpha_n \cdots \alpha_n$
	Rolgogol Ruinimo	Lariginin Lloaright	(1)
QILCIGO III / II	Doigeber Du fame	Egrionini Dografa	

Çoruh havzası için en uygun dağılım olan Genelleştirilmiş Lojistik dağılımı için boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla bölge 500 kere simüle edilmiştir(NSIM=500). Yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.191 de verilmiştir.

Çoruh havzası için Alan-Q_{ort} ilişkisi Şekil 4.66 daki gibidir. Çoruh havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.54) nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 0.013 \mathbf{A}^{1.14}$$
 (4.54)

Çoruh havzasına en uygun olan GLO dağılımının ters fonksiyonunda yer alan ζ , alfa ve k parametreleri Çizelge 4.189 da görülmektedir. Bu değerler ve (4.54) nolu denklem yardımı ile hesaplanan \overline{Q} değeri yerine koyulursa aşılmama olasılığına karşı gelebilecek taşkının büyüklüğü GLO dağılımına göre hesaplanmış olacaktır(Eş.(4.55)). Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.069 + 1.005 \left(\frac{1-F}{F}\right)^{-0.193}$$
(4.55)

Şekil 4.66. Çoruh Havzasının Alan-q ilişkisi

4.24. Aras Havzası

Aras havzasından toplam 13 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.192 de verilmiştir.

3	<u>3</u>							
İstasyon	Gözlem Yapan	Gözlem		Qort.				
No	Kurum	Süresi (yıl)	Alan (km ²)	(m³/s)				
24-010	DSİ	26	4793.0	167.4				
24-016	DSİ	21	102.7	11.6				
24-018	DSİ	30	502.0	50.7				
24-020	DSİ	24	21254.0	689.0				
24-029	DSİ	19	7086.0	417.0				
24-041	DSİ	21	63.8	11.2				
24-046	DSİ	15	180.8	33.4				
2402	EİEİ	30	8872.8	423.5				
2405	EİEİ	23	1778.4	11.7				
2409	EİEİ	37	2928.0	131.4				
2415	EİEİ	20	2380.0	164.3				
2417	EIEI	21	2548.8	236.0				
2418	EIEI	30	4890.8	176.1				

Çizelge 4.192. Aras Havzasına Ait Bilgiler

Aras havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.193 de verilmiştir. Çizelgeden de anlaşıldığı gibi uyumsuz istasyon bulunmamaktadır.

Çizelge 4.193. Aras Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

_	n						
İstasyon	(gözlem	Qort.					
No	süresi)	(m³/s)	t	t ₃	t ₄	t ₅	Di
24-010	26	167.4	0.3014	0.3608	0.2365	0.1432	0.88
24-016	21	11.6	0.2619	0.2052	0.2758	0.1469	1.98
24-018	30	50.7	0.1952	0.2681	0.2397	0.1638	1.64
24-020	24	689.0	0.3039	0.2790	0.1895	0.0569	0.32
24-029	19	417.0	0.2641	0.1544	0.1396	0.0853	0.14
24-041	21	11.2	0.2659	-0.0916	0.0082	0.0655	2.72
24-046	15	33.4	0.3460	0.1944	0.1187	0.0568	0.97
2402	30	423.5	0.2552	0.2401	0.2339	0.0931	0.29
2405	23	11.7	0.3070	0.2460	0.2605	0.1405	1.49
2409	37	131.4	0.3474	0.2671	0.1571	0.1237	0.96
2415	20	164.3	0.2054	0.1334	0.1506	0.0363	0.99
2417	21	236.0	0.2452	0.1310	0.1355	-0.0013	0.31
2418	30	176.1	0.2949	0.2417	0.1602	0.0756	0.31
	Ağırlıklı böl	gesel ortala	ama	0.2775	0.2138	0.1822	

Çizelge 4.194 deki H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.195 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.196 da görülmektedir. Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.197 de verildi. Gözlenmiş değerler ve Çizelge 4.197 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.67).

Çizelge 4.194. Aras Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0459
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.041
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0089
Standartlaştırılmış H(1) değerleri	0.55
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.0878
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.0987
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0181
Standartlaştırılmış H(2) değerleri	-0.6
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.096
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1221
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0212
Standartlaştırılmış H(3) değerleri	-1.23

Cizelge 4.195.	Uygunluk	Testi	Sonuçlar
5 0	20		5

GEN. LOJISTIK	L-BASIKLIK= 0.205	Z = 0.60 *
GEN. EXTR. DEĞER	L-BASIKLIK= 0.169	Z = -0.75 *
GEN. NORMAL	L-BASIKLIK= 0.158	Z = -1.14 *
PEARSON TIP III	L-BASIKLIK= 0.138	Z = -1.91
GEN. PARETO	L-BASIKLIK= 0.085	Z = -3.91

Çizelge 4.196. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

<u> </u>				_	•
	ζ (yer	ALFA (ölçek	K (şekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
GEN. LOJISTIK	0.905	0.257	-0.214		
GEN. EXTR. DEĞER	0.757	0.375	-0.067		
GEN. NORMAL	0.895	0.453	-0.442		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.238	1.741	4.261	0.397	0.08

y (Gumbel								
azal.	T Dön.	Aşılmama						Göz.
Değ.)	Per.	olasılığı	GLO	GEV	GNO	WAKEBY	у	Değer
-0.838	1.11	0.1	0.454	0.453	0.451	0.428	-1.220	0.349
-0.476	1.25	0.2	0.596	0.582	0.576	0.578	-0.722	0.480
0.37	2	0.5	0.905	0.896	0.895	0.908	-0.233	0.674
1.5	5	0.8	1.319	1.349	1.357	1.327	0.237	0.850
2.25	10	0.9	1.626	1.667	1.676	1.649	0.728	1.050
2.97	20	0.95	1.959	1.989	1.991	1.989	1.240	1.202
4.6	100	0.99	2.914	2.777	2.737	2.855	1.735	1.461
5.3	200	0.995	3.431	3.14	3.072	3.264	2.182	1.677
6.91	1000	0.999	4.966	4.05	3.89	4.304	2.686	1.751
9.21	10000	0.9999	8.316	5.534	5.179	6.046	3.376	2.038
							4.233	2.328
							4.656	3.432

Çizelge 4.197. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.67. Aras Havzasına Ait Taşkın Frekans Eğrileri

Aras havzası için en uygun dağılım olan Genelleştirilmiş Lojistik dağılımı için boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla bölge 500 kere simüle edilmiştir(NSIM=500). Yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.198 de verilmiştir.

Çizelge 4.198. Bolgesel Buyume Egrisinin Dogruluk Olçuleri (GLO)								
T Dönüs	F	q(F)		Hata Bantları				
Periyodu	(Aşılmama	(Büyüme	RMSE					
(Yil)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark		
1.111111	0.1	0.454	0.176	0.406	0.494	0.088		
1.25	0.2	0.596	0.099	0.556	0.627	0.071		
2	0.5	0.905	0.028	0.867	0.933	0.066		
5	0.8	1.319	0.035	1.282	1.339	0.057		
10	0.9	1.626	0.055	1.567	1.676	0.109		
20	0.95	1.959	0.074	1.855	2.071	0.216		
100	0.99	2.914	0.115	2.602	3.299	0.697		
200	0.995	3.431	0.133	2.990	4.029	1.039		
1000	0.999	4.967	0.176	4.022	6.395	2.373		
10000	0.9999	8.318	0.241	6.207	12.322	6.115		

Çizelge 4.198. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Aras havzası için Alan-Qort ilişkisi Şekil 4.68 deki gibidir. Aras havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.56) nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 0.453 \mathrm{A}^{0.74}$$
 (4.56)

Aras havzasına en uygun olan GLO dağılımının ters fonksiyonunda yer alan ζ , alfa ve k parametreleri Çizelge 4.196 da görülmektedir. Bu değerler ve (4.56) nolu denklem yardımı ile hesaplanan \overline{Q} değeri yerine koyulursa aşılmama olasılığına karşı gelebilecek taşkının büyüklüğü GLO dağılımına göre hesaplanmış olacaktır(Eş.(4.57)). Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.296 + 1.201 \left(\frac{1-F}{F}\right)^{-0.214}$$
(4.57)

Şekil 4.68. Aras Havzasının Alan-q ilişkisi

4.25. Van Havzası

Van havzasından toplam 7 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.199 da verilmiştir.

İstasyon No	Gözlem Yapan Kurum	Gözlem Süresi (yıl)	Alan (km²)	Qort. (m ³ /s)			
25-002	DSİ	17	700.0	80.8			
25-012	DSİ	27	1334.0	33.2			
25-013	DSİ	13	342.0	39.5			
25-024	DSİ	14	1664.4	58.1			
2505	EİEİ	23	1447.2	92.1			
2507	EİEİ	31	334.6	48.1			
2509	EİEİ	20	1598.0	40.3			

Çizelge 4.199. Van Havzasına Ait Bilgiler

Van havzasındaki istasyonların L-moment oranları ve uyumsuzluk ölçüleri Çizelge 4.200 de verilmiştir. Çizelgeden de anlaşıldığı gibi uyumsuz istasyon bulunmamaktadır.

Çizelge 4.201 deki H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.202 de verilmiştir. Bu sonuçlara göre Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer, Pearson Tip 3 ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.203 de görülmektedir.

Oiçusu								
İstasyon No	n (gözlem süresi)	Qort. (m ³ /s)	t	t ₃	t ₄	t ₅	Di	
25-002	17	80.8	0.2705	0.3753	0.3510	0.1982	1.10	
25-012	27	33.2	0.3583	0.3532	0.2080	0.0593	0.22	
25-013	13	39.5	0.1377	0.0194	0.1928	0.0353	1.76	
25-024	14	58.1	0.3261	0.3936	0.2514	0.1140	1.37	
2505	23	92.1	0.3556	0.4002	0.2813	0.2285	0.75	
2507	31	48.1	0.3013	0.1909	0.1131	0.0348	0.92	
2509	20	40.3	0.3611	0.2903	0.1680	0.0868	0.88	
Ağırlıklı bölgesel ortalama				0.3129	0.2938	0.2134		

Çizelge 4.200. Van Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

Çizelge 4.201. Van Havzasının Heterojenlik Ölçüsü

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0633
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0503
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0157
Standartlaştırılmış H(1) değerleri	0.82
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1106
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1107
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0318
Standartlaştırılmış H(2) değerleri	0
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1219
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1394
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0412
Standartlaştırılmış H(3) değerleri	-0.43

Çizelge 4.202. Uygunluk Testi Sonuçları

3 0	<i>70 3</i>	
GEN. LOJISTIK	L-BASIKLIK= 0.239	Z = 0.23 *
GEN. EXTR. DEĞER	L-BASIKLIK= 0.211	Z = -0.36 *
GEN. NORMAL	L-BASIKLIK= 0.191	Z = -0.79 *
PEARSON TIP III	L-BASIKLIK= 0.155	Z = -1.55 *
GEN. PARETO	L-BASIKLIK= 0.137	Z = -1.93

<u> </u>				-	• /
	ζ (yer	ALFA (ölçek	K (şekil		
Dağılımlar	parametresi)	parametresi)	parametresi)		
GEN. LOJISTIK	0.855	0.27	-0.294		
GEN. EXTR. DEĞER	0.706	0.369	-0.184		
GEN. NORMAL	0.84	0.474	-0.614		
	MU	SIGMA	GAMMA		
	(ortalama)	(St.Sap.)	(Çarpık.)		
PEARSON TYPE III	1	0.61	1.764		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.178	2.766	9.192	0.501	0.091

Çizelge 4.203. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.204 de verildi. Gözlenmiş değerler ve Çizelge 4.204 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.69).

Çizelge 4.204. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

y (Gumbel	т								
azal.	Dön.	Aşılmama							Göz.
Değ.)	Per.	olasılığı	GLO	GEV	GNO	PE3	WAKEBY	у	Değer
-0.838	1.11	0.1	0.418	0.420	0.420	0.418	0.417	-1.186	0.344
-0.476	1.25	0.2	0.547	0.538	0.529	0.511	0.553	-0.443	0.555
0.37	2	0.5	0.855	0.846	0.840	0.831	0.836	0.243	0.781
1.5	5	0.8	1.318	1.343	1.362	1.396	1.347	0.759	0.989
2.25	10	0.9	1.690	1.735	1.763	1.805	1.762	1.245	1.209
2.97	20	0.95	2.120	2.164	2.187	2.207	2.203	1.694	1.476
4.6	100	0.99	3.485	3.376	3.288	3.123	3.343	2.236	1.694
5.3	200	0.995	4.293	4.015	3.821	3.513	3.888	2.744	2.129
6.91	1000	0.999	6.936	5.851	5.214	4.412	5.293	3.565	2.198
9.21	10000	0.9999	13.711	9.626	7.640	5.688	7.697	4.258	3.034

Van havzası için en uygun dağılım olan Genelleştirilmiş Lojistik dağılımı için boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla bölge 500 kere simüle edilmiştir(NSIM=500). Yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.205 de verilmiştir.

Şekil 4.69. Van Havzasına Ait Taşkın Frekans Eğrileri

T Dönüş	F	q(F)		Hata Bantları		
Periyodu	(Aşılmama	(Büyüme	RMSE			
(Yıl)	Olasılığı)	Eğrisi)	(Ort. Hata)	95%	5%	Fark
1.111111	0.1	0.417	0.170	0.356	0.506	0.150
1.25	0.2	0.547	0.114	0.483	0.623	0.140
2	0.5	0.855	0.054	0.783	0.918	0.135
5	0.8	1.318	0.030	1.266	1.341	0.075
10	0.9	1.690	0.052	1.593	1.785	0.192
20	0.95	2.120	0.082	1.931	2.360	0.429
100	0.99	3.484	0.159	2.859	4.496	1.637
200	0.995	4.293	0.195	3.347	5.951	2.604
1000	0.999	6.935	0.284	4.867	11.495	6.628
10000	0.9999	13.708	0.432	8.233	29.963	21.730

Çizelge 4.205. Bölgesel Büyüme Eğrisinin Doğruluk Ölçüleri (GLO)

Van havzası için Alan-q ilişkisi Şekil 4.70 deki gibidir. Van havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.58) nolu formül yardımı ile hesaplanabilir.

$$\frac{\overline{Q}}{A} = q = -8E - 05A + 0.1588$$
 (4.58)

Van havzasına en uygun olan GLO dağılımının ters fonksiyonunda yer alan ζ , alfa ve k parametreleri Çizelge 4.203 de görülmektedir. Bu değerler ve (4.58) nolu

denklem yardımı ile hesaplanan \overline{Q} değeri yerine koyulursa aşılmama olasılığına karşı gelebilecek taşkının büyüklüğü GLO dağılımına göre hesaplanmış olacaktır(Eş.(4.59)). Veya ortalama debi hesaplandıktan sonra GLO dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -0.063 + 0.918 \left(\frac{1-F}{F}\right)^{-0.294}$$
(4.59)

Şekil 4.70. Van Havzasının Alan-q ilişkisi

4.26. Dicle Havzası

Dicle havzasından toplam 15 istasyon çalışmaya alınmıştır. Bu istasyonlara ait genel bilgiler Çizelge 4.206 da verilmiştir. Dicle havzasındaki istasyonların Lmoment oranları ve uyumsuzluk ölçüleri Çizelge 4.207 de verilmiştir. Çizelgeden de anlaşıldığı gibi uyumsuz istasyon bulunmamaktadır.

1.	Gözlem	Gözlem		
Istasyon	Yapan	Süresi	Alan	Qort.
No	Kurum	(yıl)	(km²)	(m³/s)
2603	EİE	33	2450.4	622.8
2604	EİE	21	7628	915.0
2605	EİE	21	5655.2	1325.2
2606	EİE	22	38280.7	3739.5
2610	EİE	33	640.4	227.1
2612	EİE	27	4105.2	1377.0
2617	EİE	18	1186	635.9
2618	EİE	21	976	214.4
2620	EİE	20	5344.4	315.5
2621	EİE	20	2504.4	65.2
2624	EİE	19	1169.6	234.7
2625	EİE	19	1127.2	200.1
2626	EİE	21	7989.2	874.6
26-024	DSİ	17	1359.3	233.0
26-028	DSİ	14	125.7	18.4

Çizelge 4.206. Dicle Havzasına Ait Bilgiler

Çizelge 4.207. Dicle Havzasındaki İstasyonların L-moment oranları ve Uyumsuzluk Ölçüsü

İstasyon	n (gözlem	Qort.					
No	süresi)	(m ³ /s)	t	t ₃	t ₄	t ₅	Di
2603	33	622.8	0.2165	0.1104	0.1935	0.0206	1.68
2604	21	915.0	0.2975	0.1731	0.1399	0.0332	0.17
2605	21	1325.2	0.3513	0.2267	0.1516	0.0601	0.40
2606	22	3739.5	0.2825	0.1143	0.1313	0.0734	0.61
2610	33	227.1	0.2511	0.1264	0.1066	0.0350	0.57
2612	27	1377.0	0.2660	0.0812	0.0801	0.0553	0.70
2617	18	635.9	0.3931	0.3424	0.2047	0.0755	1.05
2618	21	214.4	0.4226	0.2757	0.1643	0.1217	1.85
2620	20	315.5	0.3016	0.4334	0.3427	0.1572	0.70
2621	20	65.2	0.2857	0.3616	0.2488	0.1711	0.39
2624	19	234.7	0.3302	0.2758	0.1638	0.0346	0.25
2625	19	200.1	0.2613	0.1973	0.1390	0.0504	0.36
2626	21	874.6	0.2803	0.2762	0.0950	0.0385	2.45
26-024	17	233.0	0.2381	0.5298	0.4260	0.1267	2.30
26-028	14	18.4	0.2977	0.3882	0.3768	0.1558	1.53
Ağırlıklı	bölgesel c	ortalama	0.2929	0.2393	0.1850		

Çizelge 4.208 deki H değerlerine göre bölge kabul edilebilir derecede homojendir. Xtest programının sonucunda elde edilen dağılımların uygunluk ölçüsü Çizelge 4.209 da verilmiştir. Bu sonuçlara göre Genelleştirilmiş Lojistik, Genelleştirilmiş Ekstrem Değer ve Genelleştirilmiş Normal dağılım bölgeye uygun bulunmuştur. Bu dağılımlara ve Wakeby dağılımına ait parametreler Çizelge 4.210 da görülmektedir.

HETEROJENLİK ÖLÇÜSÜ (Simülasyon Sayısı=500)	
Gözlenen değerlerin Grup LCv lerinin Standart sapması	0.0549
Grup LCv lerinin Standart sapmasının Simülasyon ortalamaları	0.0462
Grup LCv lerinin Standart sapmasının simülasyonlarının standart sapması	0.0088
Standartlaştırılmış H(1) değerleri	0.98
Gözlenmiş ortalamanın LCv/LCs Mesafesi	0.1237
Ortalama LCv/LCs mesafesinin simülasyon ortalaması	0.1055
Ortalama LCv/LCs mesafesinin simülasyon standart sapması	0.0194
Standartlaştırılmış H(2) değerleri	0.94
Gözlenmiş ortalamanın LCs/LCk Mesafesi	0.1341
Ortalama LCs/LCk mesafesinin simülasyon ortalaması	0.1317
Ortalama LCs/LCk mesafesinin simülasyon standart sapması	0.0227
Standartlastırılmıs H(3) değerleri	0.11

Çizelge 4.208. Dicle Havzasının Heterojenlik Ölçüsü

Çizelge 4.209. Uygunluk Testi Sonuçları

GEN. LOJISTIK	L-BASIKLIK= 0.214	Z = 0.77 *
GEN. EKSTREM DEĞER	L-BASIKLIK= 0.181	Z = -0.45 *
GEN. NORMAL	L-BASIKLIK= 0.168	Z = -0.95 *
PEARSON TIP III	L-BASIKLIK= 0.143	Z = -1.86
GEN. PARETO	L-BASIKLIK= 0.101	Z = -3.41

Çizelge 4.210. Dağılımlara Ait Parametre Tahminleri (%90 Kabul edilebilir düzeyde)

Doğulumlar	ζ (yer	ALFA (ölçek	K (şekil		
GEN LOJISTIK	0 888	0 266			
GEN. EKSTREM DEĞER	0.737	0.380	-0.105		
GEN. NORMAL	0.876	0.468	-0.496		
	ζ	ALFA	BETA	GAMMA	DELTA
WAKEBY	0.156	3.308	9.671	0.536	-0.004

Bu parametrelere göre belirli dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu (quantile function) Çizelge 4.211 de verildi. Gözlenmiş değerler ve Çizelge 4.211 de verilen dağılımlarla elde edilen taşkın frekans eğrileri grafik olarak belirlendi (Şekil 4.71).

bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri								
y (Gumbel azal.	T Dön.	Aşılmama						Göz.
Değ.)	Per.	olasılığı	GLO	GEV	GNO	Wakeby	у	Değer
-0.838	1.11	0.1	0.433	0.434	0.432	0.431	-1.218	0.319
-0.476	1.25	0.2	0.574	0.561	0.554	0.578	-0.725	0.476
0.37	2	0.5	0.888	0.879	0.876	0.869	-0.231	0.654
1.5	5	0.8	1.325	1.354	1.366	1.358	0.249	0.826
2.25	10	0.9	1.657	1.701	1.715	1.727	0.741	1.016
2.97	20	0.95	2.025	2.061	2.068	2.094	1.234	1.241
4.6	100	0.99	3.115	2.983	2.927	2.943	1.711	1.427
5.3	200	0.995	3.722	3.428	3.322	3.306	2.196	1.768
6.91	1000	0.999	5.581	4.591	4.308	4.146	2.694	1.887
9.21	10000	0.9999	9.85	6.636	5.911	5.338	3.686	2.280
							4.111	2.515
							4.541	2.001

Çizelge 4.211. Dönüş periyotlarına karşılık boyutsuz verilere uydurulan ortak bölgesel olasılık dağılımının tekerrür fonksiyonu değerleri

Şekil 4.71. Dicle Havzasına Ait Taşkın Frekans Eğrileri

|--|

T Dönüş	F	q(F)	RMSE				
Periyodu	(Aşılmama	(Büyüme	(Ort.		Hata Bantlar	ta Bantları	
(Ýil)	Olasılığı)	Ēğrisi)	Hata)	95%	5%	Fark	
1.111111	0.1	0.434	0.200	0.372	0.465	0.093	
1.25	0.2	0.561	0.119	0.510	0.593	0.083	
2	0.5	0.879	0.033	0.839	0.910	0.071	
5	0.8	1.354	0.038	1.319	1.386	0.067	
10	0.9	1.701	0.061	1.638	1.777	0.139	
20	0.95	2.061	0.081	1.938	2.225	0.287	
100	0.99	2.983	0.126	2.637	3.496	0.859	
200	0.995	3.428	0.146	2.955	4.168	1.213	
1000	0.999	4.591	0.193	3.688	6.112	2.424	
10000	0.9999	6.637	0.268	4.783	10.071	5.288	

Dicle havzası için en uygun dağılım olan Genelleştirilmiş Ekstrem Değer dağılımı için boyutsuz bölge büyüme oranlarını, bu oranların ortalama hatalarını ve hata bantlarını bulmak amacıyla bölge 500 kere simüle edilmiştir(NSIM=500). Yapılan bu simülasyondan elde edilen sonuçlar Çizelge 4.212 de verilmiştir.

Dicle havzası için Alan-Qort ilişkisi Şekil 4.72 deki gibidir. Dicle havzası için, alanı bilinen herhangi bir bölgenin ortalama debisi (4.60) nolu formül yardımı ile hesaplanabilir.

$$\overline{\mathbf{Q}} = 1.33 \mathbf{A}^{0.75}$$
 (4.60)

Dicle havzasına en uygun olan GEV dağılımının ters fonksiyonunda yer alan ζ , alfa ve k parametreleri Çizelge 4.210 da görülmektedir. Bu değerler ve (4.60) nolu denklem yardımı ile hesaplanan \overline{Q} değeri yerine koyulursa aşılmama olasılığına karşı gelebilecek taşkının büyüklüğü GEV dağılımına göre hesaplanmış olacaktır(Eş.(4.61)). Veya ortalama debi hesaplandıktan sonra GEV dağılımına göre belirlenmiş olan q(F) büyüme eğrisi değerleri ile çarpılarak istenen dönüş aralığına karşı gelen debinin büyüklüğü bulunabilir.

$$\frac{Q}{\overline{Q}} = -2.882 + 3.619 (-\log F)^{-0.105}$$
(4.61)

Şekil 4.72. Dicle Havzasının Alan-q ilişkisi

,					<u> </u>
Havza Adı	İst.Sayısı	Ortalama Debi	r ²	En uygun dağılım	En uygun dağılımın ters fonksiyonu
1.Meriç Havzası	8	Qort = 3.256A0.571	0.91	GNO	Ters fonksiyonu analitik olarak verilememekte
2.Marmara Havzası	22	Qort = 0.992A0.83	0.95	GNO	Ters fonksiyonu analitik olarak verilememekte
3.Susurluk Havzası	17	Qort = 0.0767A+ 92.777	0.61	GEV	Q={-3.270+3.981(-Ln(F))-0.105}*Qort
4.Kuzey Ege Havzası	11	Qort = 6.056A0.52	0.83	PE3	Ters fonksiyonu analitik olarak verilememekte
5.Gediz Havzası	12	Qort = 5.509A0.466	0.76	GEV	Q={-1.774+2.412(-Ln(F))-0.187}*Qort
6.K.menderes Havzası	8	Qort = 1.4113A0.66	0.86	GLO	Q={-0.490+1.351((1-F)/F)-0.242}*Qort
	15	Qort= -72.582LN(K)+543.24	0.70	GLO	Q={-0.363+1.264((1-F)/F)-0.212}*Qort
7.B.Menderes Havzası	12	Qort = 17.362A0.2475	0.70	GNO	Ters fonksiyonu analitik olarak verilememekte
8.B.Akdeniz Havzası	17	Qort = 0.2046A0.8966	0.68	PE3	Ters fonksiyonu analitik olarak verilememekte
9.Antalya Havzası	8	Qort = 3.8258A0.2359	0.66	GLO	Q={-0.119+0.957((1-F)/F)-0.303}*Qort
	9	Qort = 33.99A0.3671	0.64	PE3	Ters fonksiyonu analitik olarak verilememekte
10.Burdur Havzası	6	Qort = 1E+18K-5.5979	0.62	GNO	Ters fonksiyonu analitik olarak verilememekte
11.Akarçay Havzası	11	Qort = 1.563A0.419	0.80	GLO	Q={0.009+0.7816((1-F)/F)-0.371}*Qort
12.Sakarya Havzası	27	Qort = 2.9224A0.3775	0.56	GNO	Ters fonksiyonu analitik olarak verilememekte
13.B.Karadeniz Havzası	20	Qort = 0.07A + 59.462	0.87	GEV	Q={-1.664+2.359(-Ln(F))-0.167}*Qort
	13	Qort = 0.2385A0.7827	0.89	GLO	Q={-0.544+1.496((1-F)/F)-0.139}*Qort
14.Yeşilırmak Havzası	12	Qort = 0.0253A + 11.169	0.97	GEV	Q={-2.005+2.673(-Ln(F))-0.162}*Qort
	17	Qort = 0.0078A + 50.828	0.90	GLO	Q={-0.176+1.046((1-F)/F)-0.264}*Qort
	9	Qort = 0.0078A + 5.014	0.82	PE3	Ters fonksiyonu analitik olarak verilememekte
	9	Qort = 2.11A0.555	0.90	GLO	Q={-0.145+1.068((1-F)/F)-0.205}*Qort
15.Kızılırmak Havzası	5	Qort = 0.481A0.6665	0.65	PE3	Ters fonksiyonu analitik olarak verilememekte
16.Konya Havzası	15	Qort = 785618.26A-2.048	0.80	GLO	Q={-0.144+0.965((1-F)/F)-0.316}*Qort
17.D.Akdeniz Havzası	13	Qort = 1.371A0.6878	0.79	GLO	Q={-0.314+1.238((1-F)/F)-0.189}*Qort

Cizelge 4.213. Türki	ve deki herbir Hidrolo	iik Havzava ait	En uvgun dağılımın	Ters fonksivonları
3 . 0	J	J		

4.BULGULAR VE TARTIŞMA

18.Seyhan Havzası	8	$Q_{ort} = 0.652 A^{0.63}$	0.93	GEV	Q={-1.536+2.288(-Ln(F)) ^{-0.146} }*Q _{ort}
	7	Q _{ort} = 0.0677A+75.807	0.72	GLO	Q={0.015+0.855((1-F)/F) ^{-0.289} }*Q _{ort}
19.Asi Havzası	8	$Q_{ort} = 2.02 A^{0.565}$	0.91	GLO	Q={-0.474+1.402((1-F)/F) ^{-0.174} }*Q _{ort}
20.Ceyhan Havzası	11	$Q_{ort} = 0.760 A^{0.74}$	0.97	GLO	Q={-0.606+1.529((1-F)/F) ^{-0.172} }*Q _{ort}
	10	$Q_{ort} = 27.936 A^{0.09}$	0.94	GLO	Q={-0.072+0.856((1-F)/F) ^{-0.361} }*Q _{ort}
21.Fırat Havzası	10	$Q_{ort} = 0.638 A^{0.79}$	0.96	PE3	Ters fonksiyonu analitik olarak verilememekte
	12	$Q_{ort} = 0.005 A^{1.39}$	0.87	GEV	Q={-0.510+1.028(-Ln(F)) ^{-0.391} }*Q _{ort}
	20	$Q_{ort} = 0.2972A^{0.8521}$	0.93	GLO	Q={-0.176+1.101((1-F)/F) ^{-0.199} }*Q _{ort}
22.D.Karadeniz Havzası	26	$Q_{ort} = 2.0106 A^{0.6324}$	0.61	GLO	Q={0.111+0.789((1-F)/F) ^{-0.266} }*Q _{ort}
23.Çoruh Havzası	12	$Q_{ort} = 0.013A^{1.14}$	0.99	GLO	Q={-0.069+1.005((1-F)/F) ^{-0.193} }*Q _{ort}
24.Aras Havzası	13	$Q_{ort} = 0.453 A^{0.74}$	0.92	GLO	Q={-0.296+1.201((1-F)/F) ^{-0.214} }*Q _{ort}
25.Van Havzası	7	Q _{ort} = -8E-05A+0.1588	0.88	GLO	Q={-0.063+0.918((1-F)/F) ^{-0.294} }*Q _{ort}
26.Dicle Havzası	15	$Q_{ort} = 1.33 A^{0.75}$	0.89	GEV	Q={-2.882+3.619(-Ln(F)) ^{-0.105} }*Q _{ort}
Toplam	455				

Şekil 4.73. Türkiye'deki hidrolojik havzalara uyan en uygun dağılımların yüzdelik payı

Türkiye'deki havzaların bazı istatistiksel parametreleri en uygun dağılımlara göre sınıflandırıldı (Çizelge 2.214). Bu sınıflandırmaya göre varyasyon katsayısı, standart sapma, çarpıklık katsayısı ve basıklık arasında herhangi bir ilişki olmadığı yani havzalara en iyi uyan dağılımlar arasında bu parametreler kullanılarak alt sınır ve üst sınır değerleri belirlenemedi. Fakat L-moment oranlarına baktığımızda her bir dağılım için havzaların t₃ ve t₄ değerleri arasında lineer bir ilişki olduğu ve bunların birbirinden farklı sınırlar içerdiği belirlendi(Şekil 4.74).
	En							
	uygun	<u></u>	0.7	0.0	hooldule	4	1	4
	dagilim		5X		Dasikiik	l 0.0004	l_3	
3.Susuriuk	GEV	0.589	182.701	1.170	2.128	0.3221	0.2394	0.1755
5.Gediz	GEV	0.755	130.718	1.616	3.587	0.3838	0.2957	0.1994
13.B.Karadeniz	GEV	0.638	330.120	1.534	2.846	0.3273	0.2822	0.1926
14. Yeşilirmak 2.bol	GEV	0.684	23.950	1.416	2.630	0.3569	0.2781	0.1925
18.Seyhan 1.bol	GEV	0.515	55.171	1.473	2.935	0.2699	0.2671	0.1948
21.A.Firat	GEV	1.037	82.431	2.259	6.132	0.4702	0.4474	0.2734
26.Dicle	GEV	0.543	394.059	1.066	1.322	0.2929	0.2393	0.1850
6.K.menderes	GLO	0.705	65.237	1.504	4.100	0.3608	0.2416	0.2303
7.B.Menderes 1.böl.	GLO	0.538	32.489	0.458	0.562	0.2889	0.2125	0.1958
9.Antalya 1.böl.	GLO	0.677	10.887	1.478	2.916	0.3391	0.3033	0.2385
11.Akarçay	GLO	0.803	18.307	1.924	5.119	0.3671	0.3707	0.2632
14.Yeşilırmak 1.böl	GLO	0.365	121.007	0.668	0.961	0.2148	0.1386	0.1800
15.Kızılırmak 1.böl.	GLO	1.214	210.849	2.947	5.997	0.3109	0.2639	0.2015
15.Kızılırmak 3.böl.	GLO	0.431	107.054	1.180	2.236	0.2345	0.2050	0.1836
16.Konya	GLO	0.753	13.241	1.772	4.956	0.3617	0.3155	0.2470
17.D.Akdeniz	GLO	0.455	136.794	0.852	0.983	0.2485	0.1895	0.1937
18.Seyhan 2.böl	GLO	0.559	235.815	1.801	4.391	0.2846	0.2886	0.2561
19.Asi	GLO	0.524	103.214	0.986	1.465	0.2565	0.1740	0.1796
20.Ceyhan 1.böl	GLO	0.510	146.410	1.149	2.628	0.2757	0.1717	0.1872
20.Ceyhan 2.böl	GLO	0.837	53.347	2.434	8.628	0.3866	0.3615	0.2629
21.Y.Fırat	GLO	0.424	139.825	1.035	1.521	0.2344	0.1989	0.1952
22.D.Karadeniz	GLO	0.451	69.256	1.498	3.369	0.2368	0.266	0.2284
23.Çoruh	GLO	0.367	114.506	0.984	1.260	0.206	0.1929	0.181
24.Aras	GLO	0.513	101.578	1.219	2.423	0.2775	0.2138	0.1822
25.Van	GLO	0.603	34.289	1.499	3.096	0.3129	0.2938	0.2134
1.Meriç	GNO	0.921	170.897	1.733	3.828	0.4656	0.3312	0.1882
2.Marmara	GNO	0.772	91.537	1.520	2.752	0.3952	0.3199	0.1950
7.B.Menderes 2.böl.	GNO	0.911	123.566	2.075	5.013	0.4292	0.4226	0.2458
10.Burdur	GNO	0.932	29.566	1.601	3.404	0.4670	0.4388	0.2625
12.Sakarya	GNO	0.662	59.653	1.458	3.224	0.3391	0.2747	0.1819
4.Kuzey Ege	PE3	0.595	101.658	0.883	0.855	0.3262	0.1954	0.1271
8.B.Akdeniz	PE3	0.652	88.923	1.077	1.233	0.3518	0.235	0.1513
9.Antalya 2.böl.	PE3	0.469	224.495	0.459	-0.531	0.2716	0.1347	0.1067
15.Kızılırmak 2.böl.	PE3	0.779	6.858	1.261	1.601	0.4124	0.2833	0.1509
15.Kızılırmak 4.böl.	PE3	0.934	18.767	1.646	2.575	0.4703	0.3863	0.1808
21.O.Fırat	PE3	0.487	188.347	0.672	-0.028	0.2763	0.1709	0.1138

Çizelge 4.214. Türkiye'deki havzaların bazı istatistiksel parametrelerinin en uygun dağılımlara göre sıralanması

Şekil 4.74. Türkiyedeki havzaların L_çarpıklık(t₃) ve L_basıklık(t₄) ilişkisi

5. SONUÇLAR

Elektrik İşleri Etüd İdaresinin (EİEİ) ve Devlet Su İşlerinin (DSİ) yıllara göre çıkarmış olduğu akım rasat yıllıklarındaki tüm Türkiye'de bulunan 26 havzadaki 455 istasyona ait su yılı maksimum akım değerlerine bölgesel taşkın frekans analizi uygulanmıştır. Bu çalışmadan elde edilen sonuçlar aşağıda verilmektedir:

- DSİ ve EİEİ tarafından belirlenen hidrolojik bölgelerin homojenliği test edilmiş, ve 7 havzanın (Büyük Menderes, Antalya, Yeşilırmak, Kızılırmak, Seyhan, Ceyhan, ve Fırat) tek bölge olarak ele alındığında heterojen olduğu tespit edilmiştir. Bu havzalar daha alt bölgelere ayrılmış ve tüm havzalara olasılık dağılım modelleri uygulanmıştır.
- 2. Türkiye'deki havzaların %50 sine Genelleştirilmiş Lojistik (GLO), %19 una Genelleştirilmiş Ekstrem Değer (GEV), %17 sine Pearson Tip 3 (PE3), %14 üne Genelleştirilmiş Normal (GNO) dağılımın uyduğu belirlenmiştir. Genelleştirilmiş Pareto (GPA) dağılımı ise yukarıda verilen yöntemlerle karşılaştırıldığında daha kötü sonuçlar üretmiştir.
- 3. Havzaların L-moment oranları grafiklere aktarılmış ve havzalar için en uygun dağılımın aynı olması durumunda L-moment oranlarının bir arada kümelenerek lineer bir doğru oluşturduğu belirlenmiştir (Şekil 4.74). Bölgenin ortalama ağırlıklı t₃ ve t₄ değerleri hesaplandıktan sonra uygun dağılım ara işlemlere ve uygunluk testlerine gerek duyulmaksızın bu grafikten okunarak belirlenebilmektedir.
- 4. Literatürdeki diğer çalışmalarla karşılaştırıldığında, bu çalışmanın en belirgin orijinal yanı kullanılan istasyon sayısının bugüne kadar yapılanlardan fazla oluşu ve tüm Türkiye'deki havzalar için bölgesel taşkın frekans eğrilerinin geliştirilmiş olmasıdır.

- 5. Her bir havza için Alan-Ortalama debi ilişkisini veren denklemler önerilmiştir. Bu denklemler yardımıyla, alanı bilinen herhangi bir noktanın (istasyonu olsun veya olmasın) ortalama debisi hesaplanabilmektedir.
- 6. Her bölgeye ait taşkın frekans eğrileri ve bu eğrilere ait denklemler bölgeye en iyi uyan dağılıma göre önerilmiştir. Ölçüm olmayan veya kısa kayıtlı istasyonlara sahip bölgelerde dahi, ortalama debi hesaplandıktan sonra bu denklemler yardımı ile herhangi bir tekerrür periyoduna karşılık aşılmama olasılığına bağlı taşkın debisi hesaplanabilmektedir.

Çıkan sonuçları bölge bazında değerlendirecek olursak aşağıdaki genellemeleri yapabiliriz:

- n Doğu Anadolu, Orta ve Doğu Akdeniz, Doğu Karadeniz bölgelerine ağırlıklı olarak GLO dağılımının,
- n Güney Doğu Anadolu, Batı Karadeniz ve Ege nin iç kısımlarına GEV dağılımının,
- n Marmara Bölgesi ve Marmara ya yakın İç Anadolu bölgesine GNO dağılımının,
- **n** Batı Akdeniz ve İç Anadolunun orta kısımlarına PE3 dağılımının uygun olduğu belirlenmiştir.

KAYNAKLAR

- AHMAD, M.I., SINCLAIR, C.D., WERRITTY, A., 1988. Log Lojistik Flood Frequency Analysis. Journal of Hydrology, 98: 205-224.
- ANLI, S. A., APAYDIN, H., ve ÖZTÜRK, F., 2007. Regional Flood Frequency Estimation For The Göksu River Basin Through L-moments. International Congress on River Basin Management, DSİ, 424-438.
- ATIEM, I. A., and HARMANCIOĞLU, N., 2006. Assessment of Regional Floods Using L-moments Approach: The Case of The River Nile. Water Resources Management, 20: 723-747.
- BAYAZIT, M. ve OĞUZ, B., 1994. Mühendisler için İstatistik. Birsen Yayınevi, İstanbul, 197s.
- BÜYÜKKARACIĞAN, N., 1997. Taşkın Frekans Analizinde kullanılan değişik dağılımların konya havzası yıllık pik akım serilerine uygulanıp karşılaştırılması. Yüksek Lisans Tezi. İnşaat Mühendisliği Bölümü, Selçuk Üniversitesi, Konya, 97s.
- CHOWDHURY, J.U., STEDINGER, J.R. and LU, L.H., 1991. Goodness-of-fit tests for Regional Generalized Extrem Value Distributions. Water Resources Research, 27:1765-1776.
- CUNNANE, C., 1988. Methods and Merits of Regional Flood Frequency Analysis. Journal of Hydrology, 100: 269-290.
- DALRYMPLE T., 1960. Flood Frequency Methods. U.S. Geol. Survey, Water Supply Paper 1453 A, Washington, 11-51.
- DEDUN, S., and JING, D., 1988. The Application of Probability Weighted Moments in Estimating The Parameters of The Pearson Type Three Distribution. Journal of Hydrology, 101: 47-61.
- DSİ, 1994. Türkiye Akarsu Havzaları Maksimum Akımlar Frekans Analizi (MAFA). Ankara.
- GEBEYEHU, A., 1989. Regional Flood Frequency Analysis. The Royal Institute of Technology, Stockholm, Sweden, Bulletin No. TRIVA-VBI-148.

- GREENWOOD, J.A., LANDWEHR, J.M., MATALAS, N.C., and WALLIS, J.R., 1979. Probability Weighted Moments: Definition and Relation to Parameters of Several Distribution Exprensible in Inverse Form. Water Resources Research, 15(5): 1049-1054.
- GÜRER, İ., 2007. Küresel Isınma, Türkiye'nin Su Kaynakları, Olası Etkileşim. I. Türkiye İklim Değişikliği Kongresi – TİKDEK 2007, 11 - 13 Nisan 2007, İTÜ, İstanbul
- HAKTANIR, T., 1982. Taşkın Frekans Analizi için Paket Program. DSİ Teknik Bülteni, 53: 48-57.
- HAKTANIR, T., 1991. Statistical Modelling of Annual Maximum Flows in Turkish Rivers. Hydrological Sciences Journal, 36(4): 367-389.
- HAKTANIR, T. and HORLACHER, H.B. 1993. Evaluation of various distributions for flood frequency analysis. Hydrological Sciences Journal, 38(1): 15-32.
- HAKTANIR, T. ve ÇAPAR, Ö.F. 1994. Güncel Modelleri de İçeren Taşkın Frekans Analizi için Paket Program. Çukurova Üniversitesi, Müh.Mim. Fakültesi Dergisi 15.Yıl Sempozyumu Özel Sayısı, Cilt I, 37-42.
- HOSKING, J.R.M., WALLIS, J.R., and WOOD, E.F., 1985. Estimation of The Generalized Extreme Value Distribution By The Method of Probability Weighted Moments. Technometrics, 27(3): 251-261.
- HOSKING, J.R.M., 1986. The Theory of Probability Weighted Moments. Research Rep. RC 12210, 160 pp., IBM Research Division, Yorktown Heights, NY.
- HOSKING, J.R.M. and WALLIS, J.R., 1987. Parameter and Quantile Estimation for The Generalized Pareto Distribution. Technometrics, 29(3): 339-349.
- HOSKING, J.R.M., and WALLIS, J.R., 1988. The Efferct of Intersite Dependence on Regional Flood Frequency Analysis. Water Resources Research, 24, 588-600.
- HOSKING, J.R.M., 1990. L-Moments: Analysis and Estimation of Distributions Using Lineer Combinations of Order Statistics. J. Royal Statistical Society, 52(2): 105-124.

- HOSKING, J.R.M., and WALLIS, J.R., 1993. Some Statistics Useful in Regional Frequency Analysis. Water Resour. Res., 29(2):271-281, IBM Research Division, Yorktown Heights, New York.
- HOSKING, J.R.M. and WALLIS, J.R., 1997. Regional Frequency Analysis An Approach Based on L-Moments. Cambridge University Press. UK.
- HOSKING, J.R.M., 2000. FORTRAN Routines for Use with the Method of L-Moments. Version 3.03,(<u>http://lib.stat.cmu.edu/general/lmoments</u>).
- HOUGHTON, J.C., 1978. Birth of A Parent: The Wakeby Distribution for Modelling Flood Flows. Water Resources Research, 14(6): 1105-1109.
- JAISWAL, R.K., GOEL, N.K., SINGH, P. and THOMAS, T., 2003. L-moment Based Flood Frequency Modelling, The Institution of Engineers (India), vol 84, pp 6-10.
- JING, D., DEDUN, S., and RONFU, Y., 1989. Further Research on Applications of Probability Weighted Moments in Estimating Parameters of The Type Three Distributions. Journal of Hydrology, 110: 239-257.
- KUMAR, R. ,CHATTERJEE, C., PANIGRIHY N., PATWARY, B.C., SINGH., R.D., 2003. Development of Regional Flood Formulae using L-moments for Gauged and Ungauged Catchments of North Brahmaputra River System. The Institution of Engineers (India), vol 84, pp 57-63.
- KUMAR, R. ,CHATTERJEE, C., KUMAR, S., LOHANI, A. K., SINGH., R.D., 2003. Development of Regional Flood Frequency Relationships using Lmoments for Middle Ganga Plains Subzone 1(f) of India. Water Resources Management, 17: 243-257.
- LANDWEHR, J.M., MATALAS, N.C. and WALLIS, J.R., 1979a. Probability Weighted Moments Compared with Some Traditional Techniques in Estimating Gumbel Parameters and Quantiles. Water Resources Research, 15(5): 1055-1064.
- LANDWEHR, J.M., MATALAS, N.C. and WALLIS, J.R., 1979b. Estimation of Parameters and Quantiles of Wakeby Distributions. 1.Know Lover Bounds. Water Resources Research, 15(6): 1361-1372.

- LANDWEHR, J.M., MATALAS, N.C. and WALLIS, J.R., 1979c. Estimation of Parameters and Quantiles of Wakeby Distributions. 1.Unknow Lover Bounds. Water Resources Research, 15(6): 1373-1379.
- LETTENMAIER D.P., and POTTER, K.W., 1985. Testing Flood-frequency Estimation Methods Using a Regional Flood Generation Model, Water Resources Research, 21(12), 1903-1914.
- LETTENMAIER D.P., WALLIS, J.R., and WOOD, E.F., 1987. Effect of Regional Heterogeneity on flood-frequency Estimation. Water Resources Research, 23(2), 313-324.
- LU, L.-H. and J.R. STEDINGER, 1992a. Sampling Variance of Normalized GEV/PWM Quantile Estimators and A Regional Homogeneity Test. J. Hydrol., 138:223-245.
- MUHARA, G., 2001. Selection of Flood Frequency Model in Tanzania Using Lmoments and Region of Influence Approach. 2nd WARFSA/WaterNet Symposium: Integrated Water Resources Management: Theory, Practice, Cases; Cape Town, 1-13.
- OKUR, A., 1999. Application of Regional Flood Frequency Analysis Through L-Moments. Y.L. Tezi. İnşaat Mühendisliği Bölümü, O.D.T.Ü., Ankara.141s
- ONÜÇYILDIZ, M., 1999. Türkiye Akarsularında Taşkın Debilerinin Belirlenmesi. Doktora Tezi. İnşaat Mühendisliği Bölümü, Selçuk Üniversitesi, Konya, 140s.
- ÖNÖZ, B., 1992. Bölgesel Taşkın Frekans Analizi. Doktora Tezi. İnşaat Mühendisliği Bölümü, İ.T.Ü., İstanbul, 121s.
- ÖNÖZ, B., 1994. Yeni Bir Parametre Tahmin Yöntemi Olasılık Ağırlıklı Momentler Yöntemi. DSİ Teknik Bülteni, 81: 49-54.
- ÖZCAN, Z., 1990. Türkiye Akarsularının Taşkın Pikleri Frekans Analizi. Yüksek Lisans Tezi. İnşaat Mühendisliği Bölümü, Ç.Ü., Adana, 156s.
- ÖZKAN, Ö. Ö., 2005. Büyük ve Küçük Menderes Havzaları Bölgesel Taşkın Analizi. Yüksek Lisans Tezi. İnşaat Mühendisliği Bölümü, D.E.Ü, İzmir. 71s.

- PARIDA, B.P., KACHROO, R.K., and SHRESTHA, D.B., 1998. Regional Flood Frequency Analysis of Mahi-Sabarmati Basin (Subzone 3-a) using Index Flood Procedure with L-moments. Water Resources Management. 12:1-12.
- PHIEN, H.N., 1987. A Review of Methods of Parameter Estimation for The Extreme Value Type-1 Distribution. Journal of Hydrology, 90: 251-267.
- PILON, P. J. and ADAMOWSKI, K., 1992. The Value of Regional Information to Flood Frequency Analysis Using the Method of L-moments. Canadian Journal of Civil Engineering. 19:137–147.
- POTTER, K.W. and D.P. LETTENMAIER, 1990. A Comparison of Regional Flood Frequency Estimation Methods Using A Resampling Method, Water Resour. Res., 26(3): 415-424.
- RAO R., and HAMED, K.H., 1997. Regional Frequency Analysis of Wabash River Flood Data By L-moments. Journal of Hydrologic Engineering, 169-179.
- RAYNAL, J.A., and SALAS, J.D., 1986. Estimation Procedures for the Type-1 extreme Value Distribution. Journal of Hydrology, 87: 315-336.
- ROSBJERG, D., H. MADSEN, and P.F. RASMUSSEN, 1992. Prediction in Partial Duration Series with Generalized Pareto-Distributed exceedances. Water Resour. Res., 28(11): 3001-3010.
- SAF, B., 2009. Regional Flood Frequency Analysis Using L-moments fort he West Mediterranean Region of Turkey. Water Resour Manage, 23(3): 531-551.
- SECKİN, N., 2002. Seyhan ve Ceyhan Havzalarının Bölgesel Taşkın Frekans Analizi. Yüksek Lisans Tezi. İnşaat Mühendisliği Bölümü, Ç.Ü., Adana.132s.
- ŞORMAN, Ü. ve OKUR, A., 2000. L-momentler Tekniği Kullanılarak Noktasal ve Bölgesel Frekans Analizinin Uygulanması. İMO Teknik Dergi, 2199-2216.
- ŞORMAN, Ü., 2004. Bölgesel Frekans Analizindeki Son Gelişmeler ve Batı Karadenizde Bir Uygulama. İMO Teknik Dergi, 15:2, 3155-3169.
- VOGEL, R.M. and N.M. FENNESSEY, 1993. L Moment Diagrams Should Replace Product Moment Diagrams. Water Resour. Res., 29(6): 1745-1752.
- VOGEL, R.M., W.O. Thomas Jr., and T.A. McMahon, 1993. Flood-Flow Frequency Selection in Southwestern United States. J. Water Resour. Plann. Manage., 119(3): 353-366.

- WALLIS, J.R., and WOOD, E.F., 1985. Relative Accuracy of Log Pearson-3 Procedures. Journal of Hydrology, Div., ASCE, 111(7): 1043-1056.
- WILTSHIRE, S.W., 1986. Identification of Homogeneous Regions for Flood Frequency Analysis. Journal of Hydrology, 84: 287-302.
- WMO, 1989. Statistical Distributions For Flood Frequency Analysis. Operational Hydrology Report. No:33, World Meteorological Organization, No:718, Geneva, İsviçre.
- YILDIZ, O., 2006. Uzun Sentetik Done Üzerinde, Yıllık Taşkın ve Yağmur Pikleri Frekans Analizi için L-momentler Yönteminde Kullanılacak Noktalama Pozisyonu Formülü Parametrelerinin Belirlenmesi. Yüksek Lisans Tezi. İnşaat Mühendisliği Bölümü, Erciyes Üniversitesi, Kayseri. 47s.

ÖZGEÇMİŞ

1977 yılında Adana'da doğdu. İlk, orta ve lise öğrenimini Adana'da tamamladı. 1995 yılında Gaziantep Üniversitesi İnşaat Mühendisliği Bölümü'nü kazandı. 1998 yılında yatay geçiş ile Ç.Ü. Müh. Mim. Fak. İnşaat Mühendisliği Bölümü'ne geçti. 2000 yılında Ç.Ü.'nden mezun oldu. Aynı yıl Ç.Ü. İnşaat Mühendisliği bölümünde yüksek lisans sınavını kazandı. 2000 yılının Kasım ayında Ç.Ü. İnşaat Mühendisliği Bölümü'nün Hidrolik Anabilim dalında Araştırma Görevlisi olarak çalışmaya başladı. 2002 yılında yüksek lisans programını tamamlayarak aynı anabilim dalında doktora programına başladı. 2003 yılının haziran ayında 3 ay süre ile JBA and the Environment Agency (UK) tarafından desteklenen "Bridge Afflux Experiments in Compound Channels," adlı projede yer almak üzere İngiltere'nin Birmingham şehrine görevlendirme ile gönderildi. Evli ve 1 çocuk annesi.

EK-1

Türkiye Havzalarına Uyan Dağılımların Haritası

EK-2

Çalışmada Kullanılan Havzaların Haritaları

EK-3

Bilgisayar Programı için Örnek Data ve Çıktı Dosyaları

Test Programı için data dosyasının hazırlanması

İstasyon sayısı

İst. No Kayıt uznluğu Ortalama debi Moment oranları(τ , τ_3 , τ_4 , τ_5)

Test Programı için örnek data dosyası

8 Meri	iç ha	vzası				
1-0008	29	219.8	0.4883	0.3474	0.1666	0.0943
1-014	22	121.4	0.4013	0.3300	0.2000	0.0951
1-031	32	33.2	0.5599	0.4102	0.2549	0.2012
1-039	31	44.0	0.4683	0.3476	0.2131	0.1270
101	30	90.2	0.3768	0.2884	0.2363	0.1673
104	22	195.6	0.3849	0.2333	0.1567	0.1097
105	22	716.2	0.5276	0.3557	0.1480	0.1108
106	22	197.1	0.4990	0.3047	0.0788	0.0289

Test Programı için örnek sonuç dosyası

Meriç havzası

8 SITES

SITE	Ν	NAME	L-CV	L-SKEW	L-KURT	D(I)
1	29	1-0008	0.4883	0.3474	0.1666	0.19
2	22	1-014	0.4013	0.3300	0.2000	1.62
3	32	1-031	0.5599	0.4102	0.2549	1.74
4	31	1-039	0.4683	0.3476	0.2131	0.13
5	30	101	0.3768	0.2884	0.2363	0.92
6	22	104	0.3849	0.2333	0.1567	1.65
7	22	105	0.5276	0.3557	0.1480	0.43
8	22	106	0.4990	0.3047	0.0788	1.31

WEIGHTED MEANS 0.4656 0.3312 0.1882

PARAMETERS OF REGIONAL KAPPA DISTRIBUTION 0.2696 0.7493 - 0.0872 0.6866

***** HETEROGENEITY MEASURES ***** (NUMBER OF SIMULATIONS = 500)

OBSERVED S.D. OF GROUP L-CV = 0.0647

SIM. MEAN OF S.D. OF GROUP L-CV= 0.0518SIM. S.D. OF S.D. OF GROUP L-CV= 0.0141STANDARDIZED TEST VALUE H(1)= 0.92

OBSERVED AVE. OF L-CV / L-SKEW DISTANCE = 0.0706SIM. MEAN OF AVE. L-CV / L-SKEW DISTANCE = 0.0948SIM. S.D. OF AVE. L-CV / L-SKEW DISTANCE = 0.0231STANDARDIZED TEST VALUE H(2) = -1.05

OBSERVED AVE. OF L-SKEW/L-KURT DISTANCE = 0.0618 SIM. MEAN OF AVE. L-SKEW/L-KURT DISTANCE = 0.1166 SIM. S.D. OF AVE. L-SKEW/L-KURT DISTANCE = 0.0283 STANDARDIZED TEST VALUE H(3) = -1.93

***** GOODNESS-OF-FIT MEASURES ***** (NUMBER OF SIMULATIONS = 500)

GEN. LOGISTIC	L-KURTOSIS = 0.258	Z VALUE = 1.66
GEN. EXTREME VALUE	L-KURTOSIS= 0.234	Z VALUE= 1.02 *
GEN. NORMAL	L-KURTOSIS= 0.209	Z VALUE= 0.34 *
PEARSON TYPE III	L-KURTOSIS= 0.166	Z VALUE= -0.82 *
GEN. PARETO	L-KURTOSIS= 0.165	Z VALUE= -0.84 *

PARAMETER ESTIMATES FOR DISTRIBUTIONS ACCEPTED AT THE 90% LEVEL

GEN. EXTREME VALUE	0.550 0.512 -0.236
GEN. NORMAL	0.735 0.674 -0.696
PEARSON TYPE III	1.000 0.930 1.987
GEN. PARETO	0.067 0.938 0.005
WAKEBY	0.037 0.520 1.260 0.626 0.145

QUANTILE ESTIMATES

0.1000.2000.5000.8000.9000.9500.9900.9950.9991.000GEV0.1630.3200.7461.4722.0712.7554.8095.9579.46917.491GNO0.1630.3050.7351.5062.1292.8094.6565.5848.08912.660PE III0.1650.2760.7161.5692.2122.8554.3464.9886.4788.608GPA0.1650.2760.7161.5702.2142.8564.3384.9736.4398.516WAKEBY0.1550.2800.7341.5312.1402.7914.5555.4477.90212.579

ALL DATA PROCESSED

Simülasyon Programı için data dosyasının hazırlanması

SEED NREP NSIM NSITE NMAX RMED NQ NQQ NGROUP START GRINT QUANT(1) QUANT(2) QUANT(NQQ) KPRINT NREC(ISITE) L-CV(ISITE) L-SKEW(ISITE) NREC(ISITE) L-CV(ISITE) L-SKEW(ISITE) NREC(ISITE) L-CV(ISITE) L-SKEW(ISITE) NREC(ISITE) L-CV(ISITE) L-SKEW(ISITE)

· · · · · · · ·

Programın parametreleri:

C SEED - Rastgele sayı üreticisi kökü. 2D0 ile 2147483647D0 arasında bir sayı.

C NREP - Simülasyon sayısının tekrarlanma sayısı.

C NSIM - REGTST de kullanılan simülasyon sayısı. Heterojenlik simülasyonu ve uygunluk testi sonucuna gerek yoksa nsim 0 seçilir.Çok büyük nrep ve nsim değerleri için çok fazla hesap zamanına ihtiyaç vardır.

C NSITE - Bölgedeki istasyon sayısı.

C NMAX - Herhangi bir istasyonun maksimum kayıt uzunluğu.

C RMED - İstasyonlar arası korelasyon . 0<RMED<1.

C NQ - Tahmin edilen değer sayısı

C START - Histogramın en alt noktasından daha aşağı nokta.

C GRINT - Histogram için grup aralığı.

C QUANT(1) QANT(2) .. QUANT(NQQ)- T dönüş aralığına karşılık gelen F aşılmama olasılıkları

C KPRINT – Simülasyon sonuçlarını basmak için işaret

C 0 – Sonuçları Yazdırma;

C 1 – Sadece bölgesel ortalamayı yazdır;

C 2 - Bütün sonuçları yazdır.

. NREC(ISITE) – İstasyonların kayıt uzunluğu

L-CV(ISITE) - İstasyonların varyasyon katsayısı

L-SKEW(ISITE)- İstasyonların çarpıklık katsayılarının ağırlıklı ortalaması

Simülasyon programı için örnek Data dosyası

2147483646D0 500 0 8 100 0.44D0 10 2 702 0.01D0 0.005D0 0.1D0 0.2D0 0.5D0 0.8D0 0.9D0 0.95D0 0.99D0 0.995D0 0.999D0 0.9999D0 0.05D0 0.95D0 2 30 0.4314D0 0.3312D0 22 0.4428D0 0.3312D0 22 0.4542D0 0.3312D0 31 0.4656D0 0.3312D0 29 0.4770D0 0.3312D0 22 0.4884D0 0.3312D0 22 0.4998D0 0.3312D0 32 0.5112D0 0.3312D0

Simülasyon programı için örnek Sonuç dosyası

REGIONAL LOGNORMAL SIMULATIONS NREP= 500 SEED= 2147483646.

SITE XI ALPHA K L-CV L-SKEW N QUANTILES

0.100 0.200 0.500 0.800 0.900 0.950 0.990 0.995 0.999 0.9999 1 0.7540 0.6244 -0.6963 0.4314 0.3312 30 0.225 0.356 0.754 1.469 2.046 2.676 4.388 5.247 7.568 11.804 2 0.7475 0.6409 -0.6963 0.4428 0.3312 22 0.204 0.339 0.748 1.481 2.074 2.720 4.477 5.359 7.742 12.089 3 0.7410 0.6574 -0.6963 0.4542 0.3312 22 0.184 0.322 0.741 1.493 2.101 2.765 4.567 5.471 7.915 12.375 4 0.7345 0.6739 -0.6963 0.4656 0.3312 31 0.163 0.305 0.735 1.506 2.129 2.809 4.656 5.584 8.089 12.660 5 0.7280 0.6904 -0.6963 0.4770 0.3312 29 0.143 0.288 0.728 1.518 2.157 2.853 4.746 5.696 8.263 12.946 6 0.7215 0.7069 -0.6963 0.4884 0.3312 22 0.122 0.271 0.722 1.530 2.184 2.897 4.835 5.808 8.436 13.231 7 0.7150 0.7234 -0.6963 0.4998 0.3312 22 0.102 0.254 0.715 1.543 2.212 2.942 4.925 5.920 8.610 13 517 8 0.7085 0.7399 -0.6963 0.5112 0.3312 32 0.081 0.237 0.709 1.555 2.240 2.986 5.014 6.033 8.783 13.802 Average For All Sites (ARITHMETIC MEAN) 0.153 0.297 0.731 1.512 2.143 2.831 4.701 5.640 8.176 12.803 Regional Growth Curve (HARMONIC MEAN) 0.137 0.292 0.731 1.511 2.141 2.827 4.692 5.628 8.156 12.770

INTER-SITE CORRELATION= 0.44

L-MOMENT ESTIMATION OF LOGNORMAL DISTRIBUTION FAILURES: 0 WARNINGS: 0

F 0.1000 0.2000 0.5000 0.8000 0.9000 0.9500 0.9900 0.9950 0.9990 0.9999

SITE 1 QUANTILES

BIAS	-0.348 -	0.156 -	-0.003	0.043	0.051	0.052	0.050	0.048	0.043	0.039
RMSE	0.424	0.249	0.170	0.173	0.183	0.197	0.236	0.254	0.299	0.364
0.050 PT.	0.288	0.552	0.752	0.805	0.802	0.787	0.735	0.718	0.675	0.623
0.950 PT.	1.083	1.208	1.318	1.347	1.383	1.410	1.490	1.520	1.595	1.735

SITE 2 QUANTILES

BIAS	-0.296 -	0.129 -	-0.013	0.015	0.017	0.015	0.008	0.005 -	-0.002	-0.008
RMSE	0.401	0.258	0.204	0.197	0.202	0.210	0.240	0.256	0.295	0.353
0.050 PT.	0.287	0.525	0.700	0.735	0.727	0.718	0.680	0.653	0.620	0.575
0.950 PT.	1.170	1.240	1.323	1.350	1.370	1.385	1.450	1.475	1.530	1.610

SITE 3 QUANTILES

BIAS	-0.219 -	0.082 -	-0.001	0.011	0.008	0.004	-0.006	-0.010	-0.017	-0.024
RMSE	0.359	0.233	0.193	0.190	0.196	0.206	0.239	0.256	0.295	0.354
0.050 PT.	0.340	0.585	0.703	0.730	0.725	0.705	0.665	0.645	0.611	0.558
0.950 PT.	1.255	1.295	1.365	1.348	1.357	1.390	1.445	1.482	1.530	1.620

SITE 4 QUANTILES

BIAS	-0.105 -	0.017	0.020	0.015	0.007	0.000	-0.014	-0.018	-0.027	-0.034
RMSE	0.353	0.237	0.190	0.179	0.184	0.194	0.228	0.245	0.285	0.344
0.050 PT.	0.385	0.630	0.727	0.738	0.724	0.718	0.667	0.645	0.604	0.552
0.950 PT.	1.475	1.415	1.370	1.335	1.333	1.350	1.387	1.410	1.490	1.640

SITE 5 QUANTILES

BIAS	0.035	0.049	0.035	0.011 -	0.002 -	0.012 -	-0.029	-0.034	-0.044	-0.053
RMSE	0.408	0.272	0.206	0.184	0.185	0.193	0.225	0.241	0.281	0.338
0.050 PT.	0.442	0.642	0.730	0.724	0.710	0.693	0.650	0.638	0.610	0.567
0.950 PT.	1.725	1.525	1.401	1.350	1.338	1.325	1.360	1.385	1.433	1.540

SITE 6 QUANTILES

BIAS	0.170	0.081	0.014 -	0.026 -	0.042	-0.055	-0.074	-0.080	-0.090	-0.099
RMSE	0.500	0.308	0.226	0.206	0.209	0.218	0.249	0.264	0.301	0.354
0.050 PT.	0.458	0.652	0.692	0.675	0.650	0.643	0.615	0.600	0.560	0.500
0.950 PT.	2.010	1.585	1.410	1.345	1.335	1.325	1.355	1.390	1.410	1.535

SITE 7 QUANTILES

BIAS	0.421	0.169	0.039 -	0.017 -	0.038 -	-0.052 -	-0.073	-0.080	-0.090	-0.100
RMSE	0.692	0.347	0.226	0.208	0.215	0.226	0.260	0.276	0.313	0.366
0.050 PT.	0.599	0.723	0.703	0.677	0.655	0.630	0.606	0.585	0.545	0.493
0.950 PT.	2.435	1.720	1.430	1.345	1.340	1.345	1.365	1.400	1.415	1.490

SITE 8 QUANTILES

BIAS	0.798 (0.263	0.055 -	0.020 -	0.046 -	-0.063	-0.088	-0.095	-0.107	-0.118
RMSE	1.051	0.406	0.207	0.175	0.180	0.191	0.225	0.240	0.276	0.327
0.050 PT.	0.748	0.790	0.738	0.705	0.690	0.672	0.631	0.610	0.567	0.512
0.950 PT.	2.945	1.790	1.405	1.277	1.265	1.261	1.290	1.315	1.370	1.470

AVERAGE FOR ALL SITES

ABS.BIAS	0.2	99 0.11	18 0.02	23 0.02	20 0.02	26 0.03	0.04	3 0.04	6 0.053	3 0.059
BIAS	0.057	0.022	0.018	0.004 -	0.006 -	0.014	-0.028 -	-0.033	-0.042 -	0.049
RMSE	0.524	0.289	0.203	0.189	0.194	0.204	0.238	0.254	0.293	0.350
0.050 PT.	0.463	0.682	0.794	0.818	0.800	0.780	0.729	0.708	0.655	0.590
0.950 PT.	1.700	1.360	1.261	1.232	1.235	1.245	1.305	1.330	1.405	1.495

GROWTH CURVE COMPONENT

ABS.BIAS	0.29	96 0.11	18 0.02	25 0.0	17 0.02	26 0.03	32 0.04	2 0.04	6 0.053	0.059
BIAS	0.052	0.024	0.022	0.008 -	-0.002 -	-0.011	-0.027	-0.032	-0.042 -0	0.052
RMSE	0.459	0.202	0.076	0.029	0.045	0.072	0.130	0.153	0.202 0	0.265
0.050 PT.	0.520	0.760	0.893	0.971	0.943	0.895	0.800	0.769	0.702 0	.625
0.950 PT.	1.550	1.258	1.127	1.042	1.058	1.100	1.195	1.235	1.328 1	.445

Hosking and Wallis (1997), Table 6.2

F	qhat(F)	RMSE	Error	bounds
0.100	0.163	0.459	0.105	0.314
0.200	0.305	0.202	0.243	0.402
0.500	0.735	0.076	0.652	0.822
0.800	1.506	0.029	1.445	1.550
0.900	2.129	0.045	2.012	2.257
0.950	2.809	0.072	2.554	3.138
0.990	4.656	0.130	3.896	5.820
0.995	5.584	0.153	4.521	7.263
0.999	8.089	0.202	6.093	11.528
1.000	12.660	0.265	8.761	20.257