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ABSTRACT 
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Çağlar CONKER 
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DEPARTMENT OF MECHANICAL ENGINEERING 

 
 Supervisor : Prof. Dr. Hakan YAVUZ 
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 Jury : Prof. Dr. Hakan YAVUZ 
  : Prof. Dr. Kadir AYDIN 
  : Prof. Dr. Emel ORAL 
  : Prof. Dr. Sadettin KAPUCU 
  : Assoc. Prof. Dr. Selçuk MISTIKOĞLU 
  
 One method used to reduce or eliminate residual vibrations is to modify the 
input signal by using previously determined system parameters. In order to eliminate 
the residual vibration completely, these system parameters must be known very 
accurately. In real systems, achieving such accuracy may not always be possible. To 
address this problem and to provide a solution, a new residual vibration elimination 
method is introduced in this thesis. It has been proven to be useful especially in cases 
of uncertain system parameters that are estimated or predicted. It is shown that the 
technique is capable of handling high levels of uncertainty and is able to successfully 
eliminate or reduce residual vibrations in flexible robotic systems. In this approach, 
the desired position of the system is primarily divided into two or more equal parts 
for each of which a sectional input command is generated. In generation of each of 
the input signal, cycloid-plus-ramped and versine-plus-ramp functions are used. This 
reference input is composed of three key functions. Each part is travelled by each of 
the three functions within the same travel time. Provided that the specified move 
time and the total distance are unchanged, vibration can be eliminated by adjusting 
excursion distance of each function. The thesis presents theoretical and experimental 
results of the techniques applied to flexible robotic systems; a comparative study of 
robustness performance is also provided. The presented simulation and experimental 
results show that the residual vibrations are considerably decreased with a high 
degree of robustness in the presence of estimation related uncertainty regarding 
system parameters. 
 
Keywords: Flexible Robotic Systems, Residual Vibration Elimination, Command 

Generation, Input Shaping, Parameter Estimation. 
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ÖZ 
 

DOKTORA TEZİ 
 

ROBOTİK UYGULAMALAR İÇİN ARTIK TİTREŞİMİN 
ELİMİNASYONUNDA KOMUT ÜRETİM TEKNİKLERİ 

 
Çağlar CONKER 

 
ÇUKUROVA ÜNİVERSİTESİ 
FEN BİLİMLERİ ENSTİTÜSÜ 

MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI 
 

 Danışman : Prof. Dr. Hakan YAVUZ 
   Yıl: 2016, Sayfa: 234 
 Jüri : Prof. Dr. Hakan YAVUZ 
  : Prof. Dr. Kadir AYDIN 
  : Prof. Dr. Emel ORAL 
  : Prof. Dr. Sadettin KAPUCU 
  : Doç. Dr. Selçuk MISTIKOĞLU 
 
 Artık titreşimlerin azaltılması ya da ortadan kaldırılması için kullanılan 
yöntemlerden bir tanesi önceden belirlenen sistem parametrelerini kullanarak girdi 
sinyalinin düzenlenmesidir. Artık titreşimi tamamen ortadan kaldırmak için, bu 
sistem parametrelerinin tam olarak bilinmesi gerekmektedir. Gerçek sistemlerde, bu 
ölçüde bir doğruluk elde etmek her zaman mümkün olmayabilir. Bu probleme bir 
çözüm sağlamak için, tezde yeni bir artık titreşim eleme yöntemi tanıtılmıştır. Yeni 
metodun özellikle tahmin edilen sistem parametrelerinin belirsiz olduğu durumlarda 
yararlı olduğu kanıtlanmıştır. Bu teknikle, yüksek düzeyde belirsizlik içeren esnek 
robotik sistemlerde başarılı bir şekilde artık titreşimleri ortadan kaldırmanın veya 
azaltmanın mümkün olduğu gösterilmiştir. Bu yaklaşımda, sistemin istenen konumu 
esas olarak, iki veya daha fazla eşit parçaya ayrılır ve her bir parçayla bölgesel bir 
girdi komutu üretilir. Her bir girdi sinyalinin üretilmesinde sikloid rampalı versin ve 
rampa fonksiyonu kullanılmaktadır. Bu referans girişi, üç temel fonksiyondan oluşur. 
Her parça bu üç fonksiyonla aynı süre içerisinde yol almaktadır. Belirlenen seyahat 
süresi ve toplam mesafeyi değiştirmeden, her fonksiyonun genliği ve yer değişimi 
ayarlanarak titreşim elimine edilebilir. Tez esnek robotik sistemlere uygulanan 
metotların teorik ve deneysel sonuçlarını sunmakta ve gürbüzlük performanslarını 
karşılaştırmaktadır. Sunulan benzetim ve deney sonuçları sistem parametrelerinin 
tahmini ile ilgili belirsizlik varlığında, artık titreşimlerin yüksek derecede 
gürbüzlükle önemli ölçüde azaldığını göstermektedir. 

 
Anahtar Kelimeler: Esnek Robotik Sistemler, Artık Titreşim Eleme, Komut 

Üretimi, Girdi Şekillendirme, Parametre Tahmini 
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1. INTRODUCTION 

 

Today, the motion control studies have become one of the main subjects of 

robotics and other automation related research areas. In modern manufacturing 

industry, high speed and sensitive motion control is necessary for the high speed and 

high quality production. However, the high speed requirements of applications make 

the sensitive motion control difficult due to residual vibrations. Therefore, finding a 

balance between the speed of motion and the elimination (or at least reduction of) 

residual vibration becomes an important part of the motion control study and related 

practical applications.  

Many researchers reported that most existing robotic manipulators are 

designed and built in a manner to maximize stiffness, in an attempt to minimize 

system vibration and achieve good positional accuracy (Dimo et al., 2001; Mohamed 

and Tokhi, 2004; Dwivedy and Eberhad, 2006; Jabbour et al., 2009; Boucetta and 

Abdelkrim, 2012; Khoiy et al., 2013; Singh and Krishna, 2014; Rana and Deepika, 

2014) Stiffness in a robot manipulator is associated to the system’s vibration and 

accuracy of positioning. In order to minimize the vibration in the system as well as to 

accomplish good positional accuracy, the stiffness of the manipulator is maximized. 

This high stiffness is achieved by using heavy material and a bulky design (Dwivedy 

and Eberhad, 2006; Jabbour et al., 2009; Khoiy et al., 2013; Singh and Krishna, 

2014). As a consequence, such robots are usually heavier with respect to the 

operating payload. This, in turn, limits the operation speed of the robot manipulation, 

increases the actuator size, and boosts energy consumption and increase the overall 

cost. Moreover, the payload to robot weight ratio, under such situation, is low. In 

order to solve these problems, robotic systems are designed to be lightweight with 

some level of flexibility. Conversely, flexible robot manipulator exhibits many 

advantages over their rigid counterparts as they require less material, they are lighter 

in weight, have higher manipulation speeds, lower in power consumption levels, they 

require small actuators. They are also more manoeuvrable, transportable, safer to 

operate due to reduced inertia, have less overall cost and higher payload to robot 
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weight ratio (Book and Majette, 1983). Although lightweight manipulators offer 

several advantages over the rigid manipulators due to their flexibility, they are more 

difficult to control. Therefore, the control mechanism of the flexible robot becomes 

more challenging with complex mathematical computations than that of their rigid 

counterparts. An accurate control of flexible robotic systems is a complex technical 

problem and it has been an active area of robotic research for decades. 

 

1.1. Vibration Control of Flexible Robotic Systems 

 

The most common control strategies for flexible mechanical systems can be 

classified as feed-forward (open-loop) and feed-back (closed-loop) control schemes. 

The feed-back control strategies mainly use measurements and/or estimations of the 

system states to suppress vibrations. The feedback control systems can be expensive 

and difficult to implement, as they require the system to be equipped with sensors. 

Furthermore, they can require significant computing power and also raise the 

possibility of unstable system behaviour (Vaughan et al., 2008). 

 

Σ Feedback 
Controller

Physical 
Plant

Reference Output

Sensor

-
Eror Input

 
Figure 1.1. Block diagram of the feedback control configuration 
 

Feed-forward techniques for vibration suppression involve developing the 

control input through consideration of the physical and vibrational properties of the 

system, so that amplitudes of the system vibrations at response modes are reduced. 

This method does not require any additional sensors or actuators and does not 

account for changes in the system once the input is developed. 

 

 



1. INTRODUCTION Çağlar CONKER 

3 

Command 
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Feedforward 
Controller

Physical 
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Reference Output

 
Figure 1.2. Block diagram of the feed-forward control configuration 
 

Figure 1.1 and Figure 1.2 shows, block diagram of feedback and feed forward 

control configurations respectively. For clarity, the following nomenclature will be 

used here. 

 

· The physical plant is a piece of equipment the purpose of which is to perform 

a particular operation. (Ogata, 2003) 

In feedback systems: 

· The feedback control block compares the reference command signals from 

the command generation block with measurements of the system states and 

determines a force (torque, voltage, etc.) vector to act on the plant. 

In feed-forward systems: 

· The command generation block transforms the desired system performance 

objective into sets of reference command signals designed to direct the 

system to achieve the specified motion objective.  

· The feed-forward control block employs an internal model of the system to 

transform the reference commands from the command generation block into a 

force vector to act on the plant in addition to the force vector from the 

feedback control block. In the absence of a feedback control loop, the 

command generation and feed forward control blocks can be combined into a 

single block.  

 

Reference Command 
Generator

Feedforward
Controller

Feedback
Controller

Physical 
Plant

Σ 

Σ Output

+

+

+

-
Figure 1.3. Block diagram of the generic system 
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The command shaping method is a feed forward control technique for 

improving the settling time and positioning accuracy, while minimizing residual 

vibrations. The shaped command profiles are generated by convolving a sequence of 

impulses or solving special functions for the desired command signal. In this motion, 

the geometry of the path is not important. However, objective is to eliminate or 

reduce the residual vibrations at the destination. To determine the input shaper 

controller commands, such information on the system parameters as estimates of the 

system natural frequency and damping ratio are required to make the necessary 

calculations. However, real systems cannot be modelled precisely, while insensitivity 

of the command shaper to modelling errors is an important design consideration. 

Many robust input shapers have been developed and reported in literature. It has 

been observed that the robust shapers typically have longer travelling time durations 

that leads to slower system responses (Vaughan et al., 2008). This creates a 

compromise between shaper robustness and rise/travelling time. This study presents 

a review of command input shaping methods and analyses the compromise between 

duration of motion and shaper robustness for different types of reference commands. 

The study also presents some theoretical and experimental results of the techniques 

applied to flexible robotic systems where a comparative study of robustness 

performance is also provided. The reviewed methods cover almost all types of 

positive and negative input shapers and related command generation based 

techniques reported in literature. Therefore, the presented study provides almost a 

complete picture of the topic for the researchers working in the area. The study is 

structured in a way that it provides all the necessary theoretical background and the 

implementation related details for each of the method presented. 

The following procedure is used to compare some command shaping 

techniques. First, the mathematical model of systems is constructed. Then, the 

shaped command signals are generated using the command shaping methods, which 

are to be compared. After this, the motion equation of the flexible systems is solved 

for the generated inputs using MATLAB functions. In order to perform a realistic 

comparison of the input shaping methods, both the experimental results and results of 

the simulation based mathematical models are used. In experimental studies, the 
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system is driven using each input and the resulting residual vibrations as well as cart or 

servo position are measured and recorded. On the simulation side of the study, the 

Matlab (2009a) model of the system is also provided with the same input commands to 

demonstrate the correlation between the theoretical and experimental results obtained. 

Finally the simulation and experimental results are compared on basis of robustness 

and travelling time.  

 

1.2. Research Goals 

 
The aim of the thesis is to investigate a new robust control technique for 

motion control and elimination of residual vibrations in flexible robotic systems. In 

this thesis, it will be focused especially on the end-point position control of the 

flexible system using the command shaping methods presented. That is, the shape or 

geometry of the path is not important, and the aim of the shaped command signal is 

to drive system from one point to another as fast as possible and stop the system at 

the desired point without residual vibrations. Specifically, command shaping is 

concerned with the shape of the reference command and residual vibrations. If the 

command has an appropriate shape, then it expected to produce the desired motion, 

while reducing the residual vibration at destination point. For generation of such a 

shaped command signal, first, mathematical model of a flexible system is to be 

constructed. Then, a new shaped command signal is generated using physical 

parameters of the system model such as natural frequency, damping ratio, etc. The 

command shaping procedure also includes consideration of some design constraints 

of the system, such as robustness. 

The new technique presented in this study is required to have the following 

specifications; 

 

v simple and easy to implement,  

v versatile and effective in reducing or eliminating residual vibrations of 

flexible systems  

v high robustness in existence of inaccuracy of system parameters. 
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v no limitation on time constraints, i.e. no time limitation or time penalty 
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Figure 1.4. The problem to be addressed in this thesis 
 

1.3. Thesis Contributions 

 
This thesis makes some contributions in flexible robotic systems point to 

point motion control and elimination of residual vibrations in the presence of system 

parameters uncertainty. Major contributions include: 

 

Ø A Comparison of Command Shaping Techniques for Elimination of 

Residual Vibrations 
This study presents a review of command shaping methods and investigates 

the compromise between rapidity of shaped motion and shaper robustness. 

The reviewed methods cover almost all types of positive and negative input 

shapers, and smoothly shaped reference commands reported in literature. 

Therefore, the presented review study provides almost a complete picture of 

the topic for the researchers working in the area. The study is structured in a 

way that it provides all the necessary theoretical background and the 

implementation related details for each of the method presented. 

Ø Dynamic Analysis of Gantry Cranes and Flexible Link Manipulators 

The mathematical models of a single pendulum gantry crane and flexible link 

manipulator are introduced and evaluated. In addition, the flexible systems 
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models developed, analysed and experimentally validated. These models are 

also used in simulations and experimental works for comparative studies. 

Ø Parameter Estimation for Flexible Mechanical Systems 
The open-loop control strategies were designed on the basis of identified 

natural frequencies and damping ratios of the flexible mechanical system. So, 

the identification of system parameters is an important factor for efficient 

design of an open-loop controller. The study introduces an experimental 

method to determine natural frequency and damping ratio of a flexible 

mechanical system. 

Ø A New Robust Command Shaping Technique to Reduce the Oscillations 

of A Lightly Damped Flexible Systems 

The main contribution of this thesis is introduction of a new residual 

vibration elimination method developed as a part of the thesis work. This new 

method proves to be useful especially in case of uncertain parameters of 

estimated or predicted systems. It is shown that the presented new technique 

is capable of handling high levels of uncertainty and able to successfully 

eliminate or reduce residual vibrations in flexible systems. In this approach, 

the desired position of the system is primarily divided into two or more equal 

parts. The generated input signal is then used to eliminate residual vibrations. 

The study presents theoretical and experimental results of the techniques 

applied to a flexible mechanical system where a comparative study of 

robustness performance is also provided. The presented simulation and 

experimental results show that the residual vibrations are considerably 

decreased with a high degree of robustness in the presence of uncertainty of 

system parameters. 

 

1.4. Thesis Structure 

 

This thesis is organized as follows: 

The present chapter deals with a brief introduction of vibration reduction of 

flexible mechanical systems and also presents the goal of the study. It also gives 
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some background on previously proposed command shaping schemes and presents 

the design philosophy that will be used throughout the thesis. At the end of this 

chapter, the principle contributions of the thesis are outlined. 

The Chapter 2 presents the motion equation for second order systems and 

related residual vibrations. In addition, it provides details on how to design a shaped 

signal for motion control of flexible mechanical systems. It also discusses the 

constraint equations and presents the details on overview of different types of 

positive input shapers, negative input shapers and smoothly shaped reference 

commands. The reviewed methods cover almost all types of positive and negative 

input shapers, and smoothly shaped reference commands reported in literature. 

The Chapter 3 describes the details of experimental setups. In addition, 

mathematical models and computer simulations for a gantry crane and a flexible link 

manipulator is developed, analysed, and experimentally validated. These models are 

then used in simulations in subsequent chapters. It also presents an experimental 

method to determine natural frequency and damping ratio of a flexible mechanical 

system. Chapter 3 also presents a novel robust control technique for elimination of 

residual vibrations in flexible systems. 

The Chapter 4 illustrates theoretical and experimental results for different 

types of positive input shapers and smoothly shaped reference commands. It presents 

comparison of command shaping methods and analyses the compromise between 

duration of motion and shaper robustness for different types of reference commands. 

Advantages and drawbacks of command shaping methods are also presented. 

Chapter 5 covers the conclusion, contributions and future work related details 

of the thesis. 
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2. PRELIMINARY WORK 
 

2.1. Literature Survey 

 

When a force is applied to a flexible mechanical system it mainly leads to 

motion along with vibrations. Controlling the behaviour of such mechanical systems 

is generally very difficult when residual vibration is not desired. Especially situation 

worsens if the controlled systems consist of light and flexible components mainly 

used for a faster response. There are some studies reported in literatures relating to 

control vibration of mechanical systems with flexible elements. Among these 

methods, command pre-shaping or input shaping based methods have attracted the 

attention of many researchers (Singhose and Pao, 1997; Singhose et al., 2000; Chan 

et al., 2003: Dharne and Jayasuriya, 2007: Gurleyuk and Cinal, 2007: Blackburn et 

al., 2010: Kim and Singhose, 2010). One of the solutions suggested in the literature 

is a feed-forward control method which alters the shape of command signal to reduce 

residual vibrations of the system. The earliest form of command pre-shaping 

technique was the use of posicast control by Smith (1957). This technique involves 

breaking a step input into two smaller steps, one of which is delayed in time. 

Superposition of the step responses results in cancellation of vibration. It also allows 

reduction in the settling time. However, this method is not generally favoured due to 

problems related to robustness in natural frequency and damping ratio uncertainties. 

In order to overcome this weakness, Singer and Seering (1988) proposed an acausal 

shaping technique for robot vibration suppression. Their work significantly extended 

the application range of input shaping method, in which the robustness was taken 

into account. In the following years, they had performed lots of works to design input 

shapers (Singer, 1989: Singer and Seering, 1990). Singer and Seering proposed an 

approach to improve the robustness of input shaping, in which the derivative of 

residual vibration amplitude ratio with respect to the frequency was set to zero, i.e. a 

three-pulse Zero Vibration and Derivative (ZVD) shaper was obtained. The ZVD 

shaper was much more robust; however the cost of the shaping time delay was also 

extended. The time delay of the Zero Vibration (ZV) shaper is half the period of the 
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system vibration, while the ZVD shaper extends to one complete vibration period, 

which means one more vibration period will be added during the system rise time if 

the shaper is employed. 

It is obviously very difficult to suppress the residual vibration amplitude to 

absolute zero, and in fact such a strict requirement is seldom implemented in actual 

applications. If the condition of residual vibration amplitude is relaxed to non-zero, 

the robustness of the system can be increased notably. Based on this idea, Singhose 

et al. (1994) proposed Extra Insensitive (EI) input shaping approach. The EI shaper’s 

robustness has been significantly improved compared with ZVD shaper, although 

they have the same time delay. Furthermore, EI input shaper will present more 

remarkable vibration suppression performance if it is designed according to the 

model error margin which can be implemented at settings level in some applications. 

Shan et al. (2005) presented another important method worth mentioning is called 

Modified Input Shaping (MIS) technique that requires the use of a certain minimum 

number of impulses. This technique forms modified input-shaping zero vibration 

(MISZV) shapers that have zero vibration at the modelled frequency, but have a 

larger number of impulses and longer shaper duration than the ZV shaper. Singhose 

et al. (1996) proposed Specified Insensitive (SI) input shaping approach. Since 

robustness limitation is an important consideration in SI method, the input shaper can 

be effectively designed according to the system robustness performance. Further 

details on comparison of methods for residual vibration elimination performance, 

such as ZV, ZVD, ZVDD and EI, are provided by Singhose et al. (1995), Vaughan et 

al. (2008), and Singhose (2009). 

With the increase of shaper robustness, the delay of rise time is also 

increased, which affects the system response performance. It is obvious that there is a 

conflict between shaper robustness and the time delay. In order to obtain a near 

perfect trade-off, the shaper parameters must be selected carefully. The constraint 

equations used to determine the input shaper often require positive values for the 

impulse amplitudes. However, move time can be significantly reduced by allowing 

the shaper to contain negative impulses. Certain types of negative shapers have been 

shown to yield the time optimal control of flexible systems (Pao and Singhose, 
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1995). However, these negative shapers cannot be used with arbitrary commands; 

they must be used with step inputs. Furthermore, the impulse time locations depend 

on the desired move distance. 

Unlike shapers containing only positive impulses, the negative shapers can 

lead to shaped command profiles which exceed the magnitude of the unshaped 

command for small periods of time. These periods of overcurrenting are not a 

problem for most applications because amplifiers and motors have peak current 

capabilities much larger than allowable steady state levels. In addition, the negative 

shapers have a tendency to excite un-modelled high modes (Pao and Singhose, 

1996). Some researchers have formulated input shaping as a zero placement 

algorithm that can give rise to negative shapers (Seth et al., 1992: Jones and Ulusoy, 

1994: Tuttle and Seering, 1994: Magee and Book, 1995). Because negative shapers 

pose the two difficulties mentioned above, the papers describing zero placement 

algorithms have usually included a procedure for eliminating the negative impulses. 

Furthermore, the negative shapers obtained with zero placements are not usually 

time-optimal. That is, there exist negative shapers with shorter durations which 

satisfy the same performance specifications. The first paper dedicated to the subject 

of time optimal negative input shapers required the numerical solutions of a set of 

simultaneous transcendental equations (Rappole et al., 1993). Singhose et al. (1994, 

1997) proposed a look up method that allows the design of time optimal negative 

input shapers without solving a set of complicated equations. 

Another approach to command shaping is the study presented by Aspinwall 

(1980). This method includes shaping rectangular or ‘bang-bang’ forcing function by 

a short, finite Fourier series to reduce residual response of a system. Swigert (1980) 

outlined a shaped torque method for minimizing modal vibration in a flexible 

satellite using shaped torque commands constructed from a finite trigonometric 

series. Starr (1985) reports command shaping method by suggesting a trajectory 

which consists of rapidly acceleration from rest to half the desired transport velocity, 

constant velocity, rapidly acceleration to full velocity and deceleration in a same 

manner. Strip (1989) suggested a motion template consist of symmetrical 

acceleration and deceleration profiles and the system is accelerated for a distance of 
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one half of acceleration times the square of natural period of oscillation. Meckl and 

Seering (1990) suggested construction of input signal from either ramped sinusoids 

or versine functions. If all harmonics of one of these template functions are added, a 

time optimal rectangular input function is obtained in a similar manner to the former 

method. However, in this method, the motion is completed in a shorter period of time 

owing to the shaped signal approach of the rectangular function. A more recent 

technique is based on shaping the input signal by inverse dynamic analysis is 

reported by Piazzi and Visioli (2000), who proposed a polynomial function as a 

desired output to produce the input signal and compared it with the bang-bang and 

other impulse shaping input methods. However, the suggested input function must be 

changed to another function at the end point to control the motion. This causes a 

sudden step change in acceleration at this point. In faster motion cases, this effect 

causes excitations and results in undesired vibrations. On the other hand, Sahinkaya 

(2001, 2004) suggests a third order exponential function for the output motion to 

shape the input signal using inverse dynamics. But the inverse dynamic analysis can 

be a very tedious task. Besides, it requires relatively more computation time. Alıcı et 

al. (1999) proposed a trajectory which consist of a half cycloid accelerating, a ramp 

(constant velocity) and another half cycloid decelerating is not restricted natural 

period of the system. In general, the major drawback of the method is due to the 

shaped signal being sensitive to modelling errors. Alıcı et al. (2000) have proposed a 

ramp superimposed onto a cycloid for input shaping in order to compare to the 

aforementioned input shaping method. Kapucu et al. (2001) proposed a hybrid input 

shaping method for undamped second order flexible system. In this method, first a 

cycloid plus ramp function is constructed as a pre-shaped input. Then this input is 

convolved this pre-shaped input with two impulse sequences, produced by using the 

command shaping method. The advantage of this method is due to fact that the time 

delay and robustness problem of the shaped signal is solved with the cost of the 

limitation travelling time of a half system period. Yavuz et al (2011) proposed a 

hybrid input shaping method to eliminate residual vibration of multi-mode system by 

convolving the pre-shaped input of cycloid-plus-ramped versine-ramp function with 

the sequence of all modes generated by two-impulse sequences. Conker et al. 



2. PRELIMINARY WORK  Çağlar CONKER 

 13 

(2014a) suggested an enhanced control technique for hybrid input shaping method to 

elimination of residual vibrations in flexible-Joint manipulators. 

Command shaping is a feed-forward control technique for improving the 

settling time and positioning accuracy, while minimizing residual vibrations. Shaped 

command profiles are generated by convolving a sequence of impulses or solving 

special functions for the desired command signal. To determine the input shaper 

controller commands, estimated values of the system natural frequency and damping 

ratio are required to make the necessary calculations. However, real systems cannot 

be modelled precisely, while robustness of the shaper to modelling errors is an 

important design consideration. Many robust input shapers have been developed and 

reported in literature. It has been observed that the robust shapers typically have 

longer travelling time durations that leads to slower the system response. This creates 

a compromise between shaper robustness and rise/travelling time. This chapter 

presents a review of command pre-shaping methods and analyses the compromise 

between rapidity of motion and shaper robustness for positive input shapers, negative 

input shapers and smoothly shaped reference commands. 

 

2.2. The Second Order Systems and Residual Vibrations 
 

Second order systems are important for a number of reasons. They are the 

simplest systems that exhibit oscillations and overshoots. Many important systems 

exhibit second order system behaviour. Also second order behaviour is part of the 

behaviour of higher order systems and understanding second order systems helps to 

understand higher order systems. 

For dynamic systems the vibration analysis starts with achievement of motion 

equation. A simplest mechanical system with arbitrary natural frequency ( nw ) and 

zero damping ratio ( =0)z  is selected. As seen in Figure 2.1(a), the system has an 

inertia element m , movable in a single coordinate ( )y t  under the effect of position 

and velocity dependent forces, and an externally applied arbitrary actuation ( )u t . 

Position dependent forces can be represented by the force of a spring with stiffness 
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kand the velocity dependent forces by the force of a dashpot of coefficient b. A great 

many realistic mechanical systems can effectively be reduced to have this form 

(Kapucu and Baysec, 1997: Mohamed and Tokhi, 2004). 

 

 
Figure 2.1. A simple, single degree of freedom, second order, linear mechanical 

system (a) and analogue simulation diagram of the same system (b). 
 

The differential equation of motion of the system shown in Figure 2.l is defined as 

 
2
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The transfer function of this second-order dynamical model is 
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where, nw  is the undamped natural frequency and z  is the damping ratio. 

Relationship between the coefficients of transfer function and differential equation is 

given as: 

 

2b kmz = and n k mw = . (2.2.b) 

 

Step or impulse response of the system generally yields damped oscillatory 

behaviour. Impulse response of a second order system at time t is given as (Singhose 

et al., 2000; Gürleyük et al., 2008; Mohamed et al., 2005): 
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where Aand 0t  are the impulse amplitude and time of the impulse, respectively. For 

n impulses, the impulse response can be expressed as; 

 

( ) ( )sin dx t M tw f= +  (2.4.) 

 

where; 
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( )1cosf z-=  (2.5.d) 

 

jA and jt  are the magnitudes and times at which the impulses occur. 

The residual single mode vibration amplitude of the impulse response is obtained at 

the time of the last impulse, nt  as 

 

( ) ( ) ( )
2 2

, , ,
n n

n n n

tV e C Szw
w z w z w z

-= +
 

(2.6.)
 

 

where 

 

( ) ( ),
1

cosn j

n

n
t

j d j
j

C A e tzw
w z w

=

= å
 

(2.7.a)
 

 

( ) ( ),
1

sinn j

n

n
t

j d j
j

S A e tzw
w z w

=

= å
 

(2.7.b)
 

 

Equation (2.6) represents the level of vibration induced by an impulse sequence 

given any value of frequency and any damping ratio less than one. A constraint on 

residual vibration amplitude can be formed by setting equation (2.6) less than or 

equal to a tolerable level of residual vibration at the modelled natural frequency and 

damping ratio (Gürleyük et al. 2008). 

 

2.3. The Importance of the Reference Command 
 

The importance of the reference command can be illustrated by investigating 

the dynamic response of an undamped second-order harmonic oscillator. Let us 

assume that the desired motion is a rapid change in position from 0 to 1. Given this 

desired motion, the most obvious command generator produces a step function. 

Figure 2.2 shows the step response of an undamped oscillator (Singhose, 1997) 
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In an attempt to reduce vibration, a command generator that produces a ramp 

function in response to the desired motion could be used. Figure 2.3 shows the 

response to a ramp command. The vibration is reduced to 66% of the step-induced 

vibration. The cost of this reduced vibration is an increase in rise time.  

 

 
Figure 2.2. Step response of an undamped second order system 
 

 
Figure 2.3. Ramp response of an undamped second order system 
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Figure 2.4. Shaped command response of an undamped second order system 
 

If the frequency of vibration is taken into account, a command generator can 

be implemented that produces a special reference command. Figure 2.4 show that 

this shaped command causes the system to make the desired motion without any 

residual vibration. The price for this improved performance is increased rise time as 

compared to the step input. All three reference commands produce the desired 

motion, a rapid change in position, but the commands produce vastly different 

amounts of residual vibration. 

Details on how to create a command generator like the one used to produce 

the shaped command will be given in Section 2.5.3.1. The shape of the command 

depends on the desired motion fed into the command generator. The distinguishing 

characteristic of the shaped reference commands is that they move the system to the 

desired position without residual vibration (Singhose, 1997). 

 

2.4. Constraint Equations 
 

Input shapers are designed by constructing and solving a set of constraint 

equations while minimizing performance criteria. The constraint equations typically 

set limits on: residual vibration amplitude, robustness to modelling errors and 
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actuator effort. The performance criteria minimized most often is the rise time, which 

is equivalent to the duration of the shaper. 

In order to design an input shaper, or calculate impulse and time locations, a 

set of constraint equations must be formulated and satisfied. There are four types of 

constraints that are to be satisfied. 

 
2.4.1. Residual Vibration Constraints 

 

The maximum residual vibration amplitude from a series of impulses given in 

equation (2.6) can be used as a constraint equation by requiring the vibration 

amplitude V, to be less than some tolerable threshold. It has been shown that 

robustness can be improved if the vibration is limited to a small value, rather than 

forced to be exactly zero (Singhose et al., 1990: Singhose et al. 1994: Singhose and 

Kim, 2008). 

 

2.4.2. Amplitude Constraints 
 

The vibration caused by an input shaper can be limited by equation (2.6). 

However, if the input shaper impulse amplitudes are not constrained, then their 

values can range between positive and negative infinities. There are two possible 

solutions to this problem: limit the magnitude of the impulses to less than a specific 

value or require all the impulses to have positive values. 

A second amplitude constraint must be enforced so that the shaped command 

reaches the desired set point; the impulse amplitudes must sum to one as follows 

(Singhose and Kim, 2008): 
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(2.8.) 

 

If negative impulses are allowed, then the rise time will improve, but 

potential drawbacks such as excitation of un-modelled high modes and actuator 
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saturation must be addressed (Singhose and Kim, 2008). The techniques for 

managing the challenges of negative input shapers have been well documented by 

Singhose et al. (1997). 

 

2.4.3. Robustness Constraints 
 

Robustness to uncertainty of system parameters such as damping ratio and 

natural frequency are two important properties that define whether a command 

shaping method is superior or not. Because mathematical models of any flexible 

system cannot be modelled perfectly, change of the system parameters influences the 

shaped signal and also the system response. Therefore, robustness of shaped signal to 

modelling uncertainty is an important comparison tool for command shaping 

methods. To analyse the robustness of a command signal, the sensitivity curve and 

the sensitivity surface definitions are used. One key measure of robustness derived 

from the sensitivity curve is called as insensitivity. Insensitivity is the width of the 

sensitivity curve at a tolerable vibration level, with respect to the parameter of 

interest (Singhose et al., 1990, 1994: Vaughan et al., 2008). 

 

2.4.3.1. Sensitivity Curve 

 

In general, sensitivity curve is a plot of the percentage residual vibration 

(vibration with shaping divided by vibration without shaping) versus the normalized 

frequency (the actual frequency divided by the modelling frequency) as shown in 

Figure 2.5 where xw  and w  are actual and modelling natural frequencies of the 

systems, respectively. Sensitivity curve provides a qualitative picture of the 

robustness of the command shaper.  A sensitivity curve reveals how much residual 

vibration will exist when there is an error in the estimation of the vibration frequency 

(Convolve, Inc., 1995). One key quantitative measure of robustness derived from the 

sensitivity curve is Insensitivity. Insensitivity is the width of the sensitivity curve at a 

tolerable vibration level. If the amplitude of the residual vibration for a flexible 

system is less than 5 %, it is widely accepted that the system is in a vibration free 



2. PRELIMINARY WORK  Çağlar CONKER 

 21 

state after following the desired trajectory. To calculation of insensitivity we draw a 

horizontal line across the sensitivity curve at 5% as shown by the line in Figure 2.5, 

and the distance between the points of intersection is the insensitivity. It is shown 

that from figure 2.5, insensitivity varies from one method to another. For the shaping 

process to be effective on real systems, the shaper must have robustness to modelling 

errors. That is, the sensitivity curve must have zero slopes at the modelling 

frequency. 

 

 
Figure 2.5. Sensitivity curves for some input shaping methods (Zero Vibration (ZV), 

Zero Vibration Derivative (ZVD), Zero Vibration Derivative and 
Derivative (ZVDD) and Extra Insensitive (EI)) 

 

2.4.3.2. Sensitivity Surface 
 

If the sensitivity curve to both the normalized frequency (the actual frequency 

divided by the modelling frequency ( )xw w ) and the normalized damping ratio (the 

actual damping ratio divided by the modelling damping ratio ( )xz z ) is shown 

simultaneously, the resulting figure becomes sensitivity surface as shown in Figure 

2.6 where  xw , w , xz  and z  are actual frequency, modelling frequency, actual 
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natural frequencies  and modelling natural frequencies, respectively. In Figure 2.6 

the variation of the residual vibration for Zero Vibration Derivative (ZVD) input 

shaper is presented against estimation error in normalized natural frequency ( )xw w  

and normalized damping ratio ( )xz z . Due to very low level of the damping ratio of 

the investigated second order system, its variation due to estimation error does not 

seem to affect the results as shown in Figure 2.6. 

 

 
Figure 2.6. Sensitivity Surface 
 

2.4.4. Minimization of Shaper Duration 

 

Due to the transcendental nature of the oscillation constraint equations, there 

are an infinite number of solutions. To select among these solutions and to ensure 

that the rise time is as fast as possible, the shaper duration must be chosen as short as 

possible. Therefore, the final necessary design constraint minimizes the time of the 

final input shaper impulse as follows (Singhose and Kim, 2008): 

 

 ( )min nt  (2.9.) 
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2.5. Shaped Reference Commands 
 

Input shaping is a command generation technique that reduces vibration by 

intelligently shaping the reference signal such that the vibratory modes of the system 

are cancelled. To implement this method, the reference signal is convolved with a 

sequence of impulses, called input shapers. The timing and amplitudes of the 

impulses are determined using estimated properties of the system such as its 

frequencies and damping.  

 

 
Figure 2.7. Input Shaping Process (Singh, 2010) 
 

The simplified process of input shaping is demonstrated in Figure 2.7. Note 

that the rise time of the command is lengthened by the duration of the shaper. In 

general, the rise time of the input-shaped system will closely track the command rise 

time, so minimizing the shaper duration is important for achieving high-speed 

motion (Vaughan et al., 2007). 

Input shaping’s ability to cancel vibration can be viewed as destructive 

interference of sinusoidal waves. If two sinusoids of the same magnitude, same 

frequency and correct phase shift between them are added together, the resulting 

combination will have no oscillations. This effect can be seen in Figure 2.7. Figure 

2.8 graphically indicates why the two impulse solution achieves a non-vibrating 

response from the system. The two responses shown can be superposed so that the 
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system moves forward without after the input has ended at time of the second 

impulse (Singer, 1989). This effect can be seen in Figure 2.8. This concept can be 

extended to the vibration reduction of flexible systems. If a flexible system with a 

constant natural frequency is given two equal inputs correctly spaced in time, then 

the vibration resulting from each input will add destructively cancelling each other 

out to yield zero residual vibration. Note that the earliest time at which the second 

input, or sinusoid, can be added is at one half the natural period of the system. 

 

 
Figure 2.8. Input Shaping Process 

 

This section will review some of the most well-known input shapers. Each of 

these input shapers is used within the research described in this thesis. The equations 

that detail the impulse times and impulse amplitudes will be written in matrix form. 

The first row indicates the amplitude of the impulse. The second row will indicate 

the time by which each impulse is delayed. Each impulse is completely defined by 

one column: a time delay and amplitude value. 
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2.5.1. Positive Input Shapers 
 

The most common solution to the problem of large impulse amplitudes is to 

restrict the amplitudes to only positive values: 

 

 0,     1,......,iA i n³ =   (2.10.) 
 

which leads to the impulse amplitudes being less than one in order to satisfy equation 

(2.8). This is an attractive solution because when all positive input shaper are 

convolved with any unshaped input, the actuator limitations contained in the 

unshaped input are preserved. That is, if the unshaped command does not cause 

actuator limits to be exceeded, then neither will the shaped command (Singhose and 

Pao, 1997). 

 

2.5.1.1. Zero Vibration (ZV) Input Shaper 
 

A Zero Vibration (ZV), input shaper is the simplest input shaper in literature. 

The only constraints are minimal time and zero vibration at the modelling frequency. 

If Percentage Vibration (V) is set equal to zero and equation (2.6) is used to design 

an input shaper, then the resulting shaper is called a Zero Vibration shaper. The ZV 

shaper durations and amplitudes are (Vaughan et al., 2008) 
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In practice, ZV shapers can be very sensitive to modelling errors. To examine this 

possibility, the amplitude of residual vibration can be plotted as a function of the 

modelling errors. 

 

 
Figure 2.9. ZV input shaper and related sensitivity curve 
 

Figure 2.9 shows such a sensitivity curve for the ZV shaper. Notice that the 

vibration amplitude increases rapidly as the actual frequency deviates from the 

modelling frequency (Singer et al., 1997). The insensitivity of ZV input shaper is 

0.063 when the vibration limit (V) is set to 5%.  

 



2. PRELIMINARY WORK  Çağlar CONKER 

 27 

2.5.1.2. Derivative Methods (ZVD, ZVDD, ZVDDD Input Shapers) 
 

The earliest form of robust input shaping was achieved by setting the 

derivative, with respect to the frequency, of the residual vibration equation (2.6) 

equal to zero. 
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 The resulting shaper is called a zero vibration and derivative (ZVD) shaper. 

The times and magnitudes for this shaper as defined by Vaughan et al. (2008) are as 

follows: 
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Figure 2.10 shows that the ZVD shaper is much more insensitive to modelling errors 

than the ZV shaper. The ZVD shaper has considerably more robustness to modelling 

errors. It is evident by noting that the width of the ZVD curve is much larger than the 

width of the ZV curve. However, the ZVD shaper has a time duration equal to one 

period of the vibration frequency, as opposed to the one-half period length of the ZV 

shaper. This trade-off is typical of the input shaper design process, increasing 

insensitivity usually requires increasing the length of travelling time of the input 

shaper (Singhose et al., 1995). The insensitivity of ZVD input shaper is 0.287 when 

the vibration limit (V) is set to 5%. This is approximately 4.5 times more insensitive 

than the ZV input shaper. The insensitivity of ZVD input shaper further increases 

from 0.287 to 0.4098 when the vibration limit (V) is increased from 5% to 10% 

(Convolve, Inc., 1995). 

An input shaper with even more insensitivity than the ZVD can be obtained 

by setting the second derivative of equation (2.6) with respect to w  equal to zero. 

This shaper is called the ZVDD shaper. The algorithm can be extended indefinitely 
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with repeated differentiation of the percentage vibration equation. For each 

differentiation, an additional impulse is added to the shaper and the shaper is 

lengthened by one-half period of the frequency (Singhose et al., 1995). 

 

 
Figure 2.10. ZVD input shaper and related sensitivity curve 

 

The times and magnitudes for ZVDD and ZVDDD shapers are defined 

(Vaughan et al., 2008) as follows: 
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where 2 31 3 3B K K K= + + +  
 

 

2 3 41 4 6 4

0 0.5 1.5 2

j

j
d d d d

K K K KA
ZVDDD C C C C Ct

T T T T

é ùé ù ê ú= =ê ú ê úë û ê úë û  
(2.15.) 

 

where 2 3 41 4 6 4  C K K K K= + + + +  
 

 
Figure 2.11. ZVDD input shaper and related sensitivity curve 
 

Figure 2.11 shows that the ZVDD shaper is much more insensitive to 

modelling errors than the ZVD shaper. However, the ZVDD shaper has a time 
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duration equal to one and a half period of the vibration frequency, as opposed to the 

one period length of the ZVD shaper. The insensitivity of ZVDD input shaper is 0.48 

when the vibration limit (V) is set to 5%. This is approximately 1.67 times more 

insensitive than the ZVD input shaper. 

 

 
Figure 2.12. ZVDDD input shaper and related sensitivity curve 
 

ZVDD and ZVDDD sensitivity curves are shown in Figure 2.11 and 2.12, 

respectively. Figure 2.12 shows that the ZVDDD shaper is much more insensitive to 

modelling errors than the ZVDD shaper. However, the ZVDDD shaper has a time 

duration equal to two period of the vibration frequency, as opposed to the one period 

length of the ZVDD shaper. The insensitivity of ZVDDD shaper is 0.627 when the 
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vibration limit (V) is set to 5%. This is approximately 1.3 times more insensitive than 

the ZVDD input shaper. 

 

2.5.1.3. Extra Insensitive (EI) Input Shapers 

 

Unlike the ZV, ZVD and ZVDD shapers, the Extra Insensitive (EI) shaper 

does not attempt to force the vibration to zero at the modelling frequency. Rather, the 

vibration is limited to some low, but acceptable level of residual vibration. The 

sensitivity curve for an EI shaper designed to limit vibration below 5% is shown in 

Figure 2.13. 

The times and magnitudes for this shaper are defined as (Singhose et al. 1994; 

Vaughan et al., 2008): 
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(2.16.) 

 
where tolV  is the tolerable level of vibration and dT  is the undamped vibration period 

of the system. For a system with viscous damping, the EI shaper is described by 

Singhose et al. (1994) and Vaughan et al. (2008). 
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Figure 2.13. EI input shaper and related sensitivity curve 
 

The length of the EI shaper is the same as that of the ZVD shaper, one 

damped cycle of vibration, but it is considerably more robust. Thus, the application 

of EI shapers is for systems where some small vibration is allowable, and the systems 

parameters are expected to change considerably. The insensitivity of EI shaper is 

0.40 when the vibration limit (V) is set to 5%. This is approximately 1.4 times more 
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insensitive than the ZVD shaper and approximately 6.35 times more insensitive than 

the ZV shaper. 

The ZVD problem statement requires the residual vibration to be exactly zero 

when the model is perfect. The EI problem statement allows there to be some small 

level of residual vibration when the model is perfect. The EI performance 

specifications are only a slight variation of the ZVD performance specifications. This 

can be seen by reducing the acceptable vibration in the EI formulation to zero. The 

EI performance specifications then converge to the ZVD specifications and the 

solutions are the same. This concept is demonstrated in Figure 2.14. As the 

acceptable limit on residual vibration is lowered, the sensitivity curve for the EI 

shaper approaches the sensitivity curve for the ZVD shaper (Singhose, 1997). 

 

 
Figure 2.14. EI Sensitivity Curve as a Function of the Vibration Limit 
 

2.5.1.4. Multi-Hump Extra Insensitive Input Shapers 
 

The shapers that extend extra insensitive shaper idea have a progressively 

larger number of humps and are called multi-hump EI shapers. For undamped 

systems, the two-hump EI is described by Singhose et al. (1994) and Vaughan et al. 

(2008) 
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Figure 2.15. Two hump EI input shaper and related sensitivity curve 

 

The undamped, three-hump EI shaper is described by Singhose et al. (1994) 

and Vaughan et al. (2008) as; 



2. PRELIMINARY WORK  Çağlar CONKER 

 35 

( ) ( )13 1 2 2 1
1

1 23 4
0 0.5 1.5 2

tol
j H

j
d d d d

VA A A A A AH EI
t

T T T T

-é ùé ù - +ê ú- = =ê ú ê úë û ê úë û   

(2.21.) 

 
where 
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Figure 2.16. Three hump EI input shaper and related sensitivity curve 

 

The sensitivity curves for two-hump EI and three-hump EI shapers are shown 

in Figure 2.15 and Figure 2.16, respectively. Note that the three-hump EI shaper 
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suppresses vibration over the entire range shown. As with the derivative-method 

shapers, the price for increased robustness is a corresponding increase in shaper 

duration. Note, however, that the penalty is not uniform across all shapers. The two-

hump EI has the same duration as the ZVDD, and the three-hump EI and ZVDDD 

have the same durations. However, the EI shapers have much more robustness, as 

can be seen in Figure 2.15 and 2.16, where a comparative study is provided. The 

insensitivity of 2H-EI shaper is 0.732 when the vibration limit (V) is set to 5%. This 

is approximately 1.5 times more insensitive than the ZVDD input shaper.  

 

Table 2.1. Damped multi-hump EI shapers (Singhose et al., 1994; Vaughan et al., 
2008) 

Shaper 
( )2 3

0 1 2 3 ,    2i d dt M M M M T Tz z z p w= + + + =  
2 3

0 1 2 3iA M M M Mz z z= + + +  
 0M  1M  2M  3M  

Tw
o-

H
um

p 
EI

 

2t  0.49890 0.16270 -0.54262 6.16180 

3t  0.99748 0.18382 -1.58270 8.17120 

4t  1.49920 -0.09297 -0.28338 1.85710 

1A  0.16054 0.76699 2.26560 -1.22750 

2A  0.33911 0.45081 -2.58080 1.73650 

3A  0.34089 -0.61533 -0.68765 0.42261 

4A  0.15997 -0.60246 1.00280 -0.93145 

Th
re

e-
H

um
p 

EI
 

2t  0.49974 0.23834 0.44559 12.4720 

3t  0.99849 0.29808 -2.36460 23.3990 

4t  1.49870 0.10306 -2.01390 17.0320 

5t  1.99960 -0.28231 0.61536 5.40450 

1A  0.11275 0.76632 3.29160 -1.44380 

2A  0.23698 0.61164 -2.57850 4.85220 

3A  0.30008 -0.19062 -2.14560 0.13744 

4A  0.23775 -0.73297 0.46885 -2.08650 

5A  0.11244 -0.45439 0.96382 -1.46000 
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The insensitivity of 3H-EI shaper is 0.97 when the vibration limit (V) is set to 

5%. This is approximately 1.55 times more insensitive than the ZVDDD input shaper 

and approximately 1.32 times more insensitive than the 2H-EI input shaper.  

Singhose et al. (1995) solved the multi hump EI constraints over a suitable 

range of vibration constraint, damping ratio and Amplitude constraint. The 

amplitudes and time locations for the damped two-hump EI ( 5tolV = percent) shaper 

and the three-hump EI ( 5tolV = percent) shaper are given in Table 2.1.as a function of 

system damping. The curve fits for the two-hump EI shaper have maximum errors in 

the impulse times and amplitudes of less than 0.5 percent over the range 0 0.3z£ £ . 

The curve fits for the three-hump EI shaper are accurate to within 0.4 percent over 

the range of 0 0.2z£ £ (Singhose et al., 1995; Vaughan et al., 2008). 

 

2.5.1.5. Modified Input Shaping (MIS) Techniques 
 

A modified input shaping (MIS) technique has been proposed that relaxes the 

constraint requiring the use of the minimum number of impulses. This technique 

forms modified input-shaping zero vibration (MISZV) shapers that have zero 

vibration at the modelled frequency, but have a larger number of impulses and longer 

shaper duration than the ZV shaper (Vaughan et al., 2008). An N-impulse MISZV 

shaper is described by Shan et al. (2005). 
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The sensitivity plots for two to five-impulse MISZV shapers are shown in 

Figure 2.17 and 2.18. One can see that the additional impulses only provide a 

minimal increase in shaper insensitivity. 

 

 
Figure 2.17. MIS 2 and 3 Impulse ZV shaper and related sensitivity curve 

 

The performance of Modified Input Shaping (MIS) Zero Vibration (ZV) 

techniques stands between ZV and ZVD. The travelling time and robustness 

properties of the MISZV method stand in between ZV and ZVD methods. Each 

additional impulse to the reference command improves the robustness performance 

while extending the travelling time. Travelling time of the Zero Vibration Modified 
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Input Shapers for 2 impulse, 3 impulse, 4 impulse and 5 impulse is 0.5Td , 0.665Td, 

0.749Td and  0,799Td, respectively. The insensitivity of 2 to 5 impulse MIS-ZV 

shaper is 0.063, 0.082, 0.090 and 0.094, respectively. The additional impulses only 

provide a minimal increase in shaper insensitivity. 

 

 
Figure 2.18. MIS 4 and 5 Impulse ZV shaper and related sensitivity curve 
 

Zero-derivative MIS (MISZVD) shapers are formed by convolving two 

MISZV shapers designed for the same frequency. The resulting MISZVD shaper is 

indicated by the number of impulses of each of the MISZV shapers used to create it. 

An N M´ -impulse MISZVD is formed by convolving an MISZV shaper containing 
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N impulses with an MISZV shaper with M impulses (Vaughan et al., 2008; Shan et 

al. 2005). Convolving MISZV shapers of higher number of impulses results in more 

robust MISZVD shapers, at the cost of increased shaper duration. It should be noted 

that a 2 2´ -impulse MISZVD shaper is the traditional ZVD shaper. The sensitivity 

plots for 2 2´  and 2 3´  impulse MISZVD shapers are shown in Figure 2.19. When 

the vibration limit (V) is set to 5%, the insensitivity of 2 2´  and 2 3´  impulse 

MISZVD shapers are 0.287 and 0.332, respectively. 2 3´  Impulse MISZVD shaper 

is approximately 1.15 times more insensitive than the 2 2´  Impulse MISZVD 

shaper. 

 

 
Figure 2.19. MIS 2 2´  and 2 3´  Impulse ZVD shaper and related sensitivity curve 
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2.5.2. Negative Input Shapers 
 

In the previous sections the constraint equations used to determine the input 

shapers required positive values for the impulse amplitudes. Although positive input 

shapers are well-behaved, they move the system more slowly than shapers containing 

negative impulses (Singhose and Pao, 1997). 

If negative impulses are allowed, then the rise time will improve, but potential 

drawbacks such as excitation of un-modelled high modes and actuator saturation 

must be addressed (Singhose and Kim, 2008). Techniques for managing the 

challenges of negative input shapers have been well documented by Singhose et al. 

(1997). 

It has been reported that, for most of the negative input shapers mentioned in 

literature, a closed-form solution cannot be derived easily (Singhose et al., 1997: 

Singhose, 1997). It was also reported that, some means of numerical solution can be 

obtained by using programmes such as the MATLAB Optimization Toolbox. The 

analytical solutions to negative input shapers are listed in Tables 2.2 to 2.4, results of 

which are presented in Figures 2.22 to 2.29. For further details on the analytical 

solutions, refer to papers by Singhose et al. (1994), Singhose et al. (1997), Singhose 

and Pao (1997), Singhose (1997).  

 

2.5.2.1. Partial-Sum (PS) Constraint 
 

If the positive amplitude constraint equation (2.10.) is abandoned, another 

amplitude constraint must be used to limit the impulses to finite values. If the 

unshaped command is a step function in actuator force, constraining the partial sums 

of the amplitudes of the impulses to be less than one will guarantee that actuator 

limits are not exceeded (Singhose et al., 1994: Singhose and Pao, 1997). This 

requirement can be expressed as: 
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When solving for the negative input shaper with constraints equation (2.8.) 

and (2.25.), while minimizing the shaper length, the impulse amplitudes are such that 

the equality sign in equation (2.25.) holds, giving impulse amplitudes of given below 

(Singhose and Pao, 1997): 

 

 [ ]1 2 2 2 2iA = - -   (2.26.) 

 

When convolving the partial sum negative shaper given by equation (2.26.) 

with a step command in acceleration, the result of the convolution is a series of 

alternating negative pulses with magnitudes equal to the magnitude of the step. 

Unfortunately, most real inputs contain many step changes in acceleration. Figure 

2.20 shows that when a shaper having amplitudes described by equation (2.25.) is 

convolved with a bang-off-bang acceleration command, there will be short periods of 

overcurrenting. That is, the magnitude of the shaped command exceeds that of the 

unshaped command (Singhose and Pao, 1997). 

 

 
Figure 2.20. Shaping with partial sum negative shapers leads to overcurrenting 

(Singhose and Pao, 1997) 
 

2.5.2.2. Unity-Magnitude (UM) Constraint 

 

The presence of the overcurrenting is tolerable for many applications because 

most systems have peak current capabilities that greatly exceed the steady state 

levels. However, elimination of the overcurrenting altogether is desirable, and has 

motivated the development of an amplitude constraint that accommodates a larger 

class of command inputs (Pao and Singhose, 1996: Singhose and Pao, 1997). This 
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alternate constraint requires the impulses amplitudes to have unity magnitude 

(Singhose and Pao, 1997): 

 

( ) 11 ,    1,...,i
iA i n+= - =   (2.27.) 

 

where n is odd. For example, if n = 5, then 

 

[ ]1 1 1 1 1iA = - -   (2.28.) 

 

Note that a shaper meeting the amplitude constraint of equation (2.27) 

automatically satisfies equation (2.8). Because the unity magnitude negative shapers 

offer considerable advantages over the partial-sum shapers given by equation (2.25), 

only the unity magnitude negative shapers will be addressed here. Figure 2.21 shows 

the shaped command resulting from the convolution of a unity-magnitude negative 

shaper with a bang-bang command (Singhose and Pao, 1997). 

 

 
Figure 2.21. Input shaping a bang-bang command with a negative unity magnitude 

EI shaper yields a command which does not cause overcurrenting 
(Singhose et al., 1994) 

 

2.5.2.3. Negative Zero Vibration (ZV) Shapers 

 

ZV shapers do not work well on most real systems, but they are the shortest 

and, therefore, the highest performance shapers when the system frequencies are 

known very accurately (Singhose et al., 1997). Combining the partial sum amplitude 

constraint of equation (2.25.) and unity magnitude amplitude constraint of equation 
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(2.27.) with the vibration constraint of equation (2.6.), the impulse time locations of 

the partial sum (PS) and Unity-Magnitude (UM) ZV shaper can be determined, 

respectively. A detailed closed-form description is provided by Singhose and Pao 

(1997), Singhose et al. (1997) and Pao and Singhose (1996). 

The amplitudes and time locations for the PS-ZV and UM-ZV shaper are given 

in Table 2.2 as a function of the system damping (Singhose et al., 1997; Singhose; 

1997). The curve fits for the PS-ZV and UM-ZV shaper have maximum errors in the 

impulse times and amplitudes of less than 0.5 percent over the range 0 0.3z£ £ . 

 

 
Figure 2.22. Partial Sum ZV input shapers and related sensitivity curve 
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When 1A= , the length of PS-ZV shaper is 0.29 dT , where dT  is the period of 

vibration. The UM-ZV shaper has a length of 0.33 dT , while the positive ZV shaper 

has length of 0.5 dT . A negative shaper will have slightly poorer performance than a 

positive shaper in the presence of modelling errors, even though they satisfy the 

same robustness constraints (Singhose et al., 1997). For example, the sensitivity 

curves for the positive ZV shaper, PS-ZV shaper and UM-ZV shaper are shown in 

Figure 2.7, Figure 2.22 and Figure 2.23, respectively. 

 

 
Figure 2.23. Unity Magnitude ZV input shapers and related sensitivity curve 
 

When the vibration limit (V) is set to 5%, the insensitivity of PS-ZV and UM-

ZV shapers are 0.054 and 0.0548, respectively. The positive ZV shaper is 



2. PRELIMINARY WORK  Çağlar CONKER 

 46 

approximately 1.16 times more insensitive than the PS-ZV input shaper and 

approximately 1.15 times more insensitive than the UM-ZV input shaper. 

 

Table 2.2. Numerically determined Negative ZV input shapers (Singhose et al., 1997; 
Singhose, 1997) 

 ( )2 3
0 1 2 3 ,    2j d dt M M M M T Tz z z p w= + + + =  

Shaper jA  jt  0M  1M  2M  3M  

PS
-Z

V
 1 1t  0 0 0 0 

-2 2t  0.20970 0.22441 0.08028 0.23124 
2 3t  0.29013 0.09557 0.10346 0.24624 

U
M

-Z
V

 1 1t  0 0 0 0 
-1 2t  0.16658 0.29277 0.07544 0.21335 
1 3t  0.33323 0.00533 0.17914 0.20125 

 

2.5.2.4. Negative Zero Vibration and Derivative (ZVD) Shapers 

 

To satisfy the ZVD constraints, a negative shaper must contain five impulses. 

For the UM-ZVD and PS-ZVD shaper the amplitudes are: 

 

[ ]1 2 2 2 2jPS ZVD A- = = - -   (2.29.) 

 

[ ]1 1 1 1 1jUM ZVD A- = = - -   (2.30.) 

 

The time location of each impulse is a complex function of z . Solutions are 

obtained by Singhose (1997) over a wide range of z  for both the UM and the PS 

amplitude constraints. The curve fits to 2t , 3t , 4t , and 5t  for the UM and the PS ZVD 

shapers are shown in Table 2.3. The length of the UM-ZVD shaper is 73 % of the 

positive ZVD, while the length of the PS-ZVD shaper is only 68 % of the positive 

ZVD input shaper when 1A= (Singhose, 1997). 
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Table 2.3. Numerically determined Negative ZVD input shapers (Singhose et al., 
1997; Singhose, 1997) 

 ( )2 3
0 1 2 3 ,    2j d dt M M M M T Tz z z p w= + + + =  

Shaper jA  jt  0M  1M  2M  3M  

PS
-Z

V
D

 
1 1t  0 0 0 0 
-2 2t  0.15234 0.23397 0.15168 0.21310 
2 3t  0.27731 0.11147 0.04614 0.28786 
-2 4t  0.63114 0.34930 0.11840 0.52558 
2 5t  0.67878 0.19411 0.27432 0.48505 

U
M

-Z
V

D
 

1 1t  0 0 0 0 
-1 2t  0.08945 0.28411 0.23013 0.16401 
1 3t  0.36613 -0.08833 0.24048 0.17001 
-1 4t  0.64277 0.29103 0.23262 0.43784 
1 5t  0.73228 0.00992 0.49385 0.38633 

 

 
Figure 2.24. Partial Sum ZVD input shapers and related sensitivity curve 
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When amplitude of the input signal is equal to one ( )1A = , the length of PS-

ZVD shaper is 0.67 dT , where dT  is the period of vibration. The UM-ZVD shaper has 

a length of 0.73 dT , while the positive ZVD shaper has length of dT . A negative 

shaper will have slightly poorer performance than a positive shaper in the presence of 

modelling errors, even though they satisfy the same robustness constraints. For 

example, the sensitivity curves for the positive ZVD shaper, PS-ZVD shaper and 

UM-ZVD shaper are shown in Figure 2.8, Figure 2.24 and Figure 2.25, respectively. 

When the vibration limit (V) is set to 5%, the insensitivity of PS-ZVD and UM-ZVD 

shapers are 0.2535 and 0.2585, respectively. The positive ZVD shaper is 

approximately 1.135 times more insensitive than the PS-ZVD input shaper and 

approximately 1.113 times more insensitive than the UM-ZVD input shaper. 

 

 
Figure 2.25. Unity Magnitude ZVD input shapers and related sensitivity curve 
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2.5.2.5. Negative Extra-Insensitive (EI) Shapers 
 

Singhose et al. (1997) solved the UM and PS EI constraints over a suitable 

range of vibration constraint, damping ratio and amplitude constraint. Table 2.4 

includes curve fits to the time locations of the negative EI shapers when residual 

vibration is 5 % . By examining Table 2.4, it can be seen that the EI shapers are 

essentially the same length as the ZVD shapers regardless of the values of z . 

However EI shapers are more insensitive to modelling errors than that of ZVD input 

shapers. 

 

 
Figure 2.26. Partial Sum EI input shapers and related sensitivity curve 
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Table 2.4. Numerically determined Negative EI input shapers (Singhose et al., 1997; 
Singhose, 1997) 
 ( )2 3

0 1 2 3 ,    2j d dt M M M M T Tz z z p w= + + + =  

Shaper jA  jt  0M  1M  2M  3M  

PS-EI 
V=5% 

1 1t  0 0 0 0 
-2 2t  0.15631 0.26556 0.05324 0.69457 
2 3t  0.28080 0.13931 -0.05627 0.75423 
-2 4t  0.63427 0.34142 0.15371 0.32904 
2 5t  0.68410 0.18498 0.31059 0.28565 

UM-EI 
V=5% 

1 1t  0 0 0 0 
-1 2t  0.09374 0.31903 0.13582 0.65274 
1 3t  0.36798 -0.05894 0.13641 0.63266 
-1 4t  0.64256 0.28595 0.26334 0.24999 
1 5t  0.73664 0.00162 0.52749 0.19208 

2 Hump 
PS-EI 
V=5% 

1 1t  0 0 0 0 
-1 2t  0.12952 0.29981 0.08010 1.7913 
1 3t  0.27452 0.22452 -0.20059 1.8933 
-1 4t  0.58235 0.51403 -0.00620 1.6106 
1 5t  0.68355 0.26308 0.08029 1.7095 
-1 6t  1.08870 0.39342 0.14197 0.48868 
1 7t  1.12080 0.25926 0.35816 0.35035 

2 Hump 
UM-EI 
V=5% 

1 1t  0 0 0 0 
-2 2t  0.05970 0.31360 0.31759 1.5872 
2 3t  0.40067 -0.08570 0.14685 1.6059 
-2 4t  0.59292 0.38625 0.34296 1.2889 
2 5t  0.78516 -0.08828 0.54174 1.3883 
-2 6t  1.12640 0.20919 0.44217 0.30771 
2 7t  1.18640 -0.02993 0.79859 0.10478 

 

Partial Sum EI and Unity Magnitude EI input shapers are shown in Figure 

2.26 and Figure 2.27, respectively. The length of the Unity Magnitude EI shaper is 

73 %  of the positive EI input shaper, while the length of the Partial Sum EI shaper is 

only 68 %  of the positive EI input shaper when amplitude of the input signal is equal 
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to one ( )1A = . When the vibration limit (V) is set to 5%, the insensitivity of PS-EI 

and UM-EI shapers are 0.348 and 0.355, respectively. The positive EI shaper is 

approximately 1.15 times more insensitive than the PS-EI input shaper and 

approximately 1.127 times more insensitive than the UM-EI input shaper. 

 

 
Figure 2.27. Unity Magnitude EI input shapers and related sensitivity curve 

 

A negative shaper will have slightly poorer performance than a positive 

shaper in the presence of modelling errors, even though they satisfy the same 

robustness constraints (Singhose et al., 1997). For example, the sensitivity curves for 
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the positive EI shaper, PS-EI shaper and UM-EI shaper are shown in Figure 2.13, 

Figure 2.26 and Figure 2.27, respectively. 

 

 
Figure 2.28. Partial Sum 2 Hump EI input shapers and related sensitivity curve 
 

Partial Sum 2 hump EI and Unity Magnitude 2 hump EI input shapers are 

shown in Figure 2.28 and Figure 2.29, respectively. The length of the UM 2 Hump 

EI shaper is 79 %  of the positive 2 hump EI input shaper, while the length of the PS 

2 Hump EI shaper is only 74 %  of the positive 2 Hump EI input shaper when 

amplitude of the input signal is equal to one ( )1A = . When the vibration limit (V) is 

set to 5%, the insensitivity of PS-Two Hump EI and UM-Two Hump EI shapers are 
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0.6437 and 0.659, respectively. The positive Two Hump EI shaper is approximately 

1.138 times more insensitive than the PS-Two Hump EI input shaper and 

approximately 1.11 times more insensitive than the UM-Two Hump EI input shaper. 

 

 
Figure 2.29. Unity Magnitude 2 Hump EI input shapers and related sensitivity curve 
 

2.5.3. Smoothly Shaped Reference Commands 
 

This kind of shaped signal is produced by adding more than one template 

functions using the model parameters. In this technique, the amplitude of each 

function is designed such that the oscillations of them cancel each other out. Thus, a 

vibration free motion is obtained at the end of the move. The details of reference 
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command functions such as a cycloid plus ramped versine plus ramp (CPRVPR), 

multi cycloid plus ramped versine plus ramp and hybrid input shaping technique is 

described in section 2.5.3.1, 2.5.3.2 and 2.5.3.3, respectively. 

 

2.5.3.1. Cycloid Plus Ramped Versine Plus Ramp (CPRVPR) Function 
 

Cycloid plus ramped versine plus ramp (CPRVPR) input is made up of three 

functions. The total distance to be covered from the beginning to end of a move 

within a specified time is the sum of the distances to be travelled by each of the three 

functions within the same travel time. By adjusting excursion distance of each 

function, vibration can be eliminated provided that the specified move time and the 

total distance are unchanged. Each component of the reference input creates 

oscillations such that these oscillations cancel each other out resulting in reduction or 

elimination of residual vibration. 

 

A motion profile of a CPRVPR function is expressed as (Kapucu et al., 2008) 

 

[ ] [ ]3 31 2 sin( ) 1 cos( )
2 2 2 2

L Rt LL Rt LY Rt Rt Rt
p p p p

= + - + + -
 

(2.31.) 

 

where 1L  is the maximum excursion distance to be travelled by ramp motion profile, 

2L  is the maximum excursion distance to be travelled by cycloid motion profile, 3L  

is the maximum excursion distance to be travelled by ramped versine motion profile, 

t  is time into motion, t  is the travelling time, and 2R p t= . Furthermore, total 

distance can be written as 1 2 3L L L L= + + , then arranging the equation above 

becomes 

 

( ) ( )32 sin( ) 1 cos( )
2 2 2

LLLRtY t Rt Rt
p p p

= - + -
  

(2.32.) 
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The corresponding velocity profile is defined as: 

 

( ) 32 cos( ) sin( )
2 2 2

L RL RLRY t Rt Rt
p p p

= - -&
  

(2.33.) 

 

 The solution of the equation of motion provided in equation (2.1.) under the 

effect of the positional input equation (2.32.) and corresponding velocity equation 

(2.33.) yields the following excursion distance values ( 1L , 2L  and 3L ) for zero 

residual vibration with zero initial conditions (Kapucu et al., 2008). 
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(2.34.) 

 

where nw  is the natural frequency, and nt  is the natural period. Variations of 1L , 

2L  and 3L  is possible with traveling time t  to result in an oscillation free 

displacement of the system. 

Cycloid plus ramped versine plus ramp function motion profile and related 

sensitivity curve is shown in Figure 2.30. Figure 2.30 shows that the vibration 

amplitude increases rapidly as the actual frequency deviates from the modelling 

frequency. The length of the CPRVPR reference function is the same as that of the 

ZV shaper, half damped cycle of vibration. However, the ZV shaper has slightly 

more robustness to modelling errors. The insensitivity of CPRVPR function is 

0.0585 when the vibration limit (V) is set to 5%. The insensitivity further increases 

from 0.0585 to 0.1175 when V is increased from 5% to 10%. ZV shaper is 

approximately 1.076 times more insensitive than the CPRVPR reference function. 
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On the other hand, theoretically, there is no travelling time restriction on the system 

and this is the main advantages of this reference command (Kapucu et al., 2008). 

 

 
Figure 2.30. Cycloid plus ramped versine plus ramp function and related sensitivity 

curve for a total travelling distance 1L =  and travelling time of 0.5 dTt =  
 

2.5.3.2. Multi Cycloid Plus Ramped Versine Plus Ramp (CPRVPR) Function 

 

The cycloid plus ramped versine plus ramp function, described in section 

2.5.3.1, can be extended to drive for multi degree of freedom systems. The shaped 

reference commands for these systems can be written as 
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(2.35.) 

 

The excursion distance values are found as; 
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(2.36.)
 

 

where 1i
L is the maximum excursion distance to be travelled by ramp motion profile, 

2i
L  is the maximum excursion distance to be travelled by cycloid motion profile, 3i

L  

is the maximum excursion distance to be travelled by ramped versine motion profile 

for ith preshaped input. Also, iz , niw , nit  are damping ratio, natural frequency, period 

of natural oscillation for ith preshaped input, respectively. 

 

2.5.3.3. Hybrid Input Shaper 

 

In this method, a preshaped command is produced by combining the different 

template functions to allow the resulting trajectory and the travelling time being 

adjustable. Then, this preshaped input is convolved with sequence of impulses. This 

sequence of impulses is obtained using the input shaping described in section 2.5.1.1 

to increase the robustness of the signal. The method suggested by Yavuz et al. (2011) 
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is named as hybrid input shaping. For a specified travelling time and displacement, 

hybrid-shaping technique is implemented as follows; 

 

1. Travelling time for the template function is calculated from 1 t delayt t t= -  in 

order to satisfy the total travelling time tt .Note that tt  should be greater than 

the delayt . 

2. The distances 1L , 2L  and 3L  for the template functions are calculated from 

equation (2.34), 

3. The resulting trajectory is convolved with the two impulse sequence defined 

by equation (2.11). 

 

The motion profile and related sensitivity curve for hybrid input shaping 

method are shown in Figure 2.31 for travelling time dTt = . It can be seen from 

Figure 2.31 that the vibration is considerably eliminated by convolving the pre-

shaped input of cycloid plus ramped versine ramp function with the sequence of all 

modes generated by two impulse sequences. In generation of the convolved input 

signal, cycloid-plus-ramped and versine-plus-ramp functions are used. This reference 

input is composed of three functions. Considering the total distance to be covered 

within a specified time is divided into three parts. Each part is travelled by each of 

the three functions within the same travel time. Provided that the specified move 

time and the total distance are unchanged, vibration can be eliminated by adjusting 

excursion distance of each function. Each component of input creates such 

oscillations that they cancel each other out. The details of cycloid-plus-ramped and 

versine-plus-ramp functions are presented in Section 2.5.3.1. The increase in 

travelling time improves the robustness and also causes variations on the input 

function profile. The length of the Hybrid input shaper is the same as that of the ZVD 

shaper, one damped cycle of vibration, but ZVD shaper is slightly more robust to 

modelling errors. The insensitivity of Hybrid input shaper is 0.2754 when the 

vibration limit (V) is set to 5%. The insensitivity further increases from 0.2754 to 

0.3927 when V is increased from 5% to 10%. ZVD shaper is approximately 1.044 
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times more insensitive than the Hybrid input shaper. On the other hand theoretically, 

the main advantage of hybrid input shaping method is that there is no travelling time 

restriction in application of the method (Yavuz et al., 2011). 

 

 
Figure 2.31. Hybrid input shaper and related sensitivity curve for a total travelling 

distance 1L =  and travelling time of dTt =  
 

2.6. Multi Mode Input Shapers 
 

Single mode shapers can be obtained by simply plugging the natural 

frequency and damping ratio of the system into simple equations like those derived 

in the Section 2.5. The equations provide the amplitudes and time locations of the 
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impulses that comprise the input shaper. A simple method to obtain a two-mode 

shaper is to convolve two single-mode shapers together. For example, suppose a 

system has undamped modes at 1 Hz and 2.5 Hz, then ZV shapers for each mode are 
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1 2
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t t t
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(2.37.)
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(2.38.)

 

 
When describing a two-mode shaper, the constraints used to eliminate each 

mode will be stated explicitly. For example, if ZVD constraints are used for the first 

mode and ZV constraints are used for the second mode, then the result is a ZVD-ZV 

shaper. 

Convolving the shapers defined by equation 2.37 and 2.38; one can generate a 

ZV-ZV shaper defined as follows: 

 

1 1 1 2 2 1 2 2

1 1 1 2 2 1 2 2

* * * *j

j a b a b a b a b

A A B A B A B A B
ZV ZV

t t t t t t t t t
é ù é ù

- = =ê ú ê ú+ + + +ë ûë û
  

(2.39.) 

 

The sensitivity curves for the single-mode shapers and the convolved two-

mode shaper for ZV and ZVD techniques are shown in Figure 2.32 and 2.33, 

respectively. The convolved ZVD-ZVD shaper is more robust then the ZV-ZV 

shaper for all mode ratios. Figure 2.32 and Figure 2.33 shows that convolved shapers 

have greater robustness to second mode modelling errors. Note that the vibration 

suppression of the convolved two mode ZVD-ZVD shaper near 6 Hz is due to the 

contribution from the 1 Hz shaper. Single mode shapers suppress vibration at odd 

multiplies of their design frequency. When an input shaper is convolved with a 

second shaper, the vibration suppression properties at these higher frequencies are 

passed on to the resulting two mode shaper (Singhose, 1997: Singhose et al, 1997). 
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Figure 2.32. Convolved two mode ZV-ZV shapers for 1 Hz and 2.5 Hz  

 

 
Figure 2.33. Convolved two mode ZVD-ZVD shapers for 1 Hz and 2.5 Hz 
 

2.7. Comparison of Conventional Command Shaping Techniques 

 

In the previous sections some selected positive, negative and smoothly 

shaped reference command methods are introduced. The successful implementation 

of the introduced command shaping methods requires accurate estimation or 
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determination of the natural frequency and damping ratio of the system in concern. 

In addition to this, the mathematical models of any flexible system cannot be 

modelled perfectly. The variations or change of the system parameters influences the 

shaped signal and also the system response. Therefore, the robustness of shaped 

signal to modelling uncertainty is an important performance comparison tool for 

command shaping methods. In this section, the presented methods are compared for 

length of travelling time and also their robustness for system natural frequency 

estimation errors. 

 

 
Figure 2.34. Performance criteria for comparison of positive and smoothly shaped 

reference commands 
 

This Section presents a comparison of conventional command pre-shaping 

methods and investigates the compromise between rapidity of motion and shaper 

robustness. In this study, in total of 23 different input shaping methods are reviewed. 

The compared methods cover almost all types of positive shapers and smoothly 

shaped reference commands reported in literature. Therefore, the presented review 

study provides almost a complete picture of the topic for the researchers working in 

the area. The study is structured in a way that it provides all the necessary theoretical 

background and the implementation related details for each of the method presented. 
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In addition, the presented methods are also used for comparative study of robustness 

and travelling time features. 

 

 
Figure 2.35. Performance criteria for comparison of negative input shapers 
 

From the details of the Figure 2.34 and 2.35 it can be concluded from 

simulation results that (Conker et al., 2014b): 

 

Ø The robust shapers typically have longer travelling times that leads to slower 

the system response. This creates a compromise between shaper robustness 

and rise/travelling time. 

Ø The increasing travelling time appears to cause increasing robustness that is 

mostly method dependent. Hence, the compromise on increasing travelling 

time gains increasing robustness that varies from a method to another. In 

other words, the efficiency of methods varies from one method to another. 

Ø The comparative study of the methods for robustness indicate that the best 

method for positive input shapers is three hump extra insensitive (3H-EI) 

with value of '0.97', and for negative input shapers is Unity Magnitude two 

hump extra insensitive with value of '0.659'. 
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2.8. Applications of Command Shaping 
 

 Due to its ease of implementation and robustness to system uncertainty, input 

shaping has been applied with great success to many types of real world systems. 

Many researchers applied their methods on real system such as robotic manipulators, 

cranes, coordinate measuring machines, spacecraft etc. to verify them with 

experimental results. Some of the applications that have been reported in the 

literature are summarized here. 

Successful applications of command shaping techniques have been reported 

on problems of controlling XY stages (Singhose and Singer, 1996: Fortgang et al., 

2005: Park et al., 2007: Vaughan et al., 2009), flexible robotic manipulators (Starr, 

1985: Tzes et al., 1989: Singer and Seering, 1990: Hillsley and Yurkovich, 1991: 

Magee and Book, 1993: Feddema, 1993: Kwon et al., 1994: Zou et al., 1995: Wilson 

et al. 1996: Grosser and Singhose, 2000: Chang et al, 2003: Mohamed and Tokhi, 

2004: Yano and Terashima, 2005: Kapucu et al., 2005: Alici et al., 2006: Kapucu et 

al., 2006: Sung and Lee, 2006: Freese et al., 2007: Gurleyuk, 2007: Park and Rhim, 

2008: Huey et al., 2008: Yavuz et al., 2011: Conker et al., 2014a) and voice coil 

motors (Jung et al., 2009). Command shaping has also proven beneficial for 

spacecraft (Liu and Wie, 1992: Banerjee, 1993: Singh and Vadali, 1993: Wie et al., 

1993: Singhose et al., 1996: Gorinevsky and Vukovich, 1998: Song et al., 1999: 

Parman and Koguchi, 1999: Banerjee et al., 2001: Biediger et al., 2003: Robertson et 

al., 2005). Command shaping has been implemented on tower cranes (Vaughan et al., 

2007), boom cranes (Parker et al., 1999: Danielson et al., 2008), container cranes 

(Park et al., 2000: Hong and Hong, 2004: Zrnić et al., 2005: Masoud and Daqaq, 

2006: Daqaq and Masoud, 2006), as well as several portable cranes.   

Input shapers for multi-mode systems have also been designed for specific 

applications such as robots (Yurkovich et al., 1990: Hillsley and Yurkovich, 1991: 

Magee and Book, 1993: Hillsley and Yurkovich, 1993: Magee and Book, 1994: 

Magee and Book, 1995), spacecraft (Banerjee, 1993: Singh and Vadali, 1993: Sung 

and Wander, 1993: Tuttle and Seering, 1995: Banerjee and Singhose, 1998: Banerjee 

et al., 2001: Robertson et al., 2005: Hu, 2008) and cranes (Kim and Singhose, 2007: 
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Manning et al., 2008: Singhose et al., 2008). In addition, some work has addressed 

the use of input shaping on nonlinear systems (Gorinevsky and Vukovich, 1998: 

Smith et al., 2002: Kozak et al., 2004). Input shaping has also been applied to 

systems with varying parameters (Magee and Book, 1992: Pao and Lau, 2000). 
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3. MATERIALS AND METODS 

 

3.1. Materials 

 

3.1.1. Experimental Setup of Flexible Robot Systems 

 

In this study, Quanser linear pendulum gantry system and Quanser flexible link 

manipulator systems are used for experimental study of flexible robotic systems, 

shown in Figures 3.1 and 3.5, respectively. For further validation of the proposed 

techniques and to demonstrate the practical effectiveness of the proposed techniques 

over the conventional methods, a set of experiments are performed. Experimental 

setups used for performance analysis of the techniques with the Quanser linear 

pendulum gantry and flexible-link laboratory positioning mechanisms are presented 

in this section. 

 

3.1.1.1. Single Pendulum Gantry System 

 
A picture of the linear single pendulum gantry system and its schematic 

illustration is shown in Figure 3.1. The pendulum has a pivot on the cart, and the 

angular position of the pendulum (a ) is measured using an encoder. The centre of 

mass of the pendulum is at length, pl , and the moment of inertia about the centre of 

mass is pj . The pendulum angle, a , is zero when it is suspended perfectly vertically 

and increases positively when rotated counter-clockwise (CCW). The positive 

direction of linear displacement of the cart, cx , is to the right when facing the cart. 

The position of the pendulum centre of gravity is denoted as the ( px , py ) coordinate 

(Quanser Inc., 2012a). 

The experimental block diagram of single pendulum gantry details of which 

are presented by Quanser Consulting Inc. is shown in Figure 3.2. The experimental 

setup consists of a compound pendulum bonded to the sliding member (cart) moving 

horizontally, which is driven by a high quality DC motor equipped with a planetary 
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gearbox. The cart slides along a stainless steel shaft using linear bearings. The DC 

motor is equipped with internal brakes, which are engaged when the power is 

disabled. On the single pendulum gantry system, both cart and pendulum positions 

are measured with two optical encoders. The encoder measuring the cart linear 

position does so through a rack-pinion system. Both encoders are typically identical. 

The encoder model used in the experimental setup is a single-ended optical shaft 

encoder. It offers a high resolution of 4096 counts per revolution. These encoders are 

connected to digital counters built in the interfacing board; the result of the 

measurement is then sent to the PC. 

 

 
Figure 3.1.a). Single pendulum gantry electromechanical model; and b) its schematic 

illustration 
 

An interfacing board is used to link the computer with the single pendulum 

gantry system, as shown in the experimental setup diagram in Figure 3.2. The 

controller developed by user is implemented using MATLAB/SIMULINK, which is 

integrated with the real time plant by Quarc software. The results of experiments are 

obtained in SIMULINK environment. The whole system, whose parameters are 

shown in Table 3.1, is illustrated in Figure 3.1. The detailed information upon the 

utilized single pendulum gantry can be found in reference (Quanser Inc., 2012a). 
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Figure 3.2. Linear single pendulum gantry crane diagram 
 

3.1.1.2. Modelling of the Single Pendulum Gantry Crane System 

 

Instead of using classical mechanics, the Lagrange method is used to find the 

equations of motion of the system. This systematic method is often used for more 

complicated systems such as robotic manipulators with multiple joints. 

More specifically, the dynamics equations that describe the motion of the 

linear cart and pendulum with respect to the motor voltage will be obtained using the 

Euler-Lagrange equation: 

 
2

i
i i

L L Q
t q q
¶ ¶

- =
¶ ¶ ¶&

  (3.1.) 

 

The variable iq  is called generalized coordinate. For this system let 

 

( ) ( ) ( )T
cq t x t ta= é ùë û   (3.2.) 

 

where ( )cx t  is the cart position and ( )ta  is the pendulum angle. The corresponding 

velocities are 
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( ) ( ) ( )T cx t t
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With the generalized coordinates defined, the Euler-Lagrange equations for the linear 

pendulum gantry are: 
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  (3.4.) 

 

The Lagrangian of the system, L , is described as, 

 

L T V= -   (3.5.) 

 

where T  is the total kinetic energy of the system and V  is the total potential energy 

of the system. Therefore, the Lagrangian represents the difference between the 

kinetic and potential energy of the system. 

According to the reference frame definition shown in Figure 3.1, the 

Cartesian coordinates of the centre of gravity of the pendulum are defined by: 

 

( )
( )

sin

cos
p c p

p p

x x l

y l

a

a

= +

= -
  (3.6.) 

 

Since the linear motion of the cart is fixed vertically, the total potential 

energy of the system can be expressed as the gravitational potential energy of the 

pendulum: 

 

( )cosT p pV M gl a= -   (3.7.) 
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The total kinetic energy of the system is the sum of the translational and 

rotational kinetic energies arising from the cart and pendulum. The translational 

kinetic energy of the cart, ctT , can be expressed as: 

 

21
2ct cT Mx= &   (3.8.) 

 

and the rotational energy due to the DC motor, crT , is: 

 
2 2

22
g m g c
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mp
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  (3.9.) 

 

where the corresponding experimental setup parameters are defined in the User 

Manual (Quanser Inc., 2012a). If the kinetic energy equations are combined, the 

resultant total kinetic energy of the cart can be defined as: 

 

21
2c eq cT J x= &   (3.10.) 

 

where  
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The pendulum translational kinetic energy can be expressed as a function of the 

linear velocity of the centre of gravity: 

 

2 21
2pt p p pT M x y= +& &   (3.12.) 
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where the components of the linear velocity of the pendulum centre of gravity are 

defined by: 

 

( )
( )
cos

sin
p c p

p p

x x l

y l

a a

a a

= +
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&& &
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  (3.13.) 

 

The rotational kinetic energy of the pendulum is defined as: 

 

21
2pr pT J a= &   (3.14.) 

 

where the parameters of the pendulum are listed in the User Manual (Quanser Inc., 

2012a). 

The total kinetic energy of the system can be found by combining the kinetic 

energy of the cart in Equation (3.10), with the pendulum kinetic energy in Equations 

(3.12) and (3.14): 

 

( ) ( ) ( )2 2 21 1cos
2 2T eq p c p p c p p pT J M x M l x J M la a a= + + + +& && &  (3.15.) 

 

The generalized forces, 
cxQ  and Q, are used to describe the non-conservative 

forces (e.g., friction) applied to a system with respect to the generalized coordinates. 

The generalized force acting on the linear cart is: 

 

cx c eq cQ F B x= - &   (3.16.) 

 

and acting on the pendulum is 

 

pQ Ba a= - &   (3.17.) 
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The nonlinear Coulomb friction applied to the linear cart, and the forces on 

the linear cart due to the pendulum’s action have been neglected in the dynamic 

model. By substituting the total kinetic and potential energy of the system shown in 

Equation (3.7.) and Equation (3.15.), and the generalized forces into the Euler-

Lagrange formulation, the nonlinear Equations of Motion (EOM) are becomes as 

follows: 

 

( ) ( ) ( ) 2cos sineq p c p p p p c eq cJ M x M l M l F B xa a a a+ + - = -&& &&& &  (3.18.) 

 

( ) ( ) ( )2cos sinp p c p p p p p pM l x J M l M l g Ba a a a+ + + = -&& &&&  (3.19.) 

 

Table 3.1. Physical parameters of the linear single pendulum gantry crane system 
Symbol Description Value Unit 

cx  Cart position  mm 
a  Link angle  rad 
g  Gravitational constant of earth 9.81 m/s2 

pM  Pendulum mass 0.230 kg 

pl  Pendulum length from pivot to 
center of gravity 

0.3302 m 

eqJ  Lumped mass of the cart system 1.07313 kg 

pJ  Pendulum moment of inertia 7.89*10-3 kg.m2 

mJ  Rotor inertia 3.9*10-7 kg.m2 

eqB  Equivalent viscous damping 
coefficient 

5.4 N.m.s/rad 

pB  Viscous damping coefficient, as 
seen at the pendulum axis 

0.0024 N.m.s/rad 

gh  Planetary gearbox efficiency 0.90  

mh  Motor efficiency 0.69  

gK  Planetary gearbox gear ratio 3.71  

mK  Motor back-emf constant 7.68 * 10-3 V/(rad/s) 

tK  Motor current-torque constant 7.68 * 10-3 N.m/A 

mR  Motor armature resistance 2.6 Ω 

mpr  Motor pinion radius 6.35*10-3 m 

cF  Driving force  N 
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The linear force applied to the cart, cF , is generated by the servo motor and described 

by the equation: 

 

g g t g m c
c m m

m mp mp

K K K K x
F V

R r r
h
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æ öæ ö
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  (3.20.) 

 
where the servo motor parameters are defined in the User Manual (Quanser Inc., 

2012a). 

 

 
Figure 3.3. Simulink diagram of single pendulum gantry crane system 
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Figure 3.4. Simulink diagram of DC motor for single pendulum gantry system 
 

3.1.1.3. Flexible-Link Robotic Manipulator 

 
The Figure 3.5 shows the modular flexible link apparatus manufactured by 

Quanser Consulting, Inc (Quanser Inc., 2012b). The manipulator arm is a spring steel 

bar that moves in the horizontal plane due to the action of a DC motor. A 

potentiometer measures the angular position of the system, and the arm deflections 

are measured by means of a strain gauge mounted near its base. The whole system, 

whose parameters are shown in Table 3.2., is shown in Fig. 3.5. 

The base of the flexible link is mounted on the load gear of the system. The 

servo angle, q  increases positively when it rotates counter-clockwise (CCW). The 

servo and the link turn in the CCW direction when the control voltage is positive. 

The flexible link has a total length of lL , a mass of lm , and its moment of inertia 

about the center of mass is lJ . The deflection angle of the link is denoted as a and 

increases positively when rotated in CCW direction (Quanser Inc., 2012b). 
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Figure 3.5. a) Flexible-link manipulator electromechanical model; and b) its 

schematic illustration 
 

The flexible link system can be represented by the diagram shown in Figure 

3.6. Our control variable is the input servo motor voltage, mV . This generates a 

torque, t , at the load gear of the servo that rotates the base of the link. The viscous 

friction coefficient of the servo is denoted by eqB . This is the friction that opposes 

the torque being applied at the servo load gear. The friction acting on the link is 

represented by the viscous damping coefficient lB . Finally, the flexible link is 

modelled as a linear spring with the stiffness SK . 

 

Jeq MotorJL

BL KS Beq

τ,θα 
Vm

 
Figure 3.6. Flexible-link manipulator model 
 

The experimental block diagram of flexible link manipulator is shown in 

Figure 3.7. This manipulator arm, fabricated by Quanser Consulting Inc., is a spring 

steel bar that moves in the horizontal plane due to the action of a DC motor. The DC 
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motor is equipped with a gear box. The gearbox output drives external gears. The 

unit is equipped with tachometer, potentiometer and optical encoder to measure the 

output angular speed and position. The arm deflection of flexible link is measured 

via a strain gauge mounted at the clamped end of the flexible arm. The output of this 

strain gauge is an analogue signal proportional to the deflection of the link. The 

installation and calibration of this gauge is done by the manufacturer, Quanser. The 

deflection output is available in the specific software. The controller developed by 

user is implemented using MATLAB/SIMULINK which is integrated with the real 

time plant by Quarc software. The results of experiments are obtained in SIMULINK 

environment. The detailed information upon the utilized flexible link manipulator 

can be found in reference (Quanser Inc., 2012b). 

 

PCInrefacing 
Card

Flexible Link 
ManipulatorAmplifiers DC Motor

Strain Gage

Harmonic 
Drive

Potentiometer
and

Tachometer

 
Figure 3.7. Flexible link robotic manipulator diagram 
 

3.1.1.4. Modelling of the Flexible-Link Robotic Manipulator 

 

Instead of using classical mechanics, the Lagrange method is used to find the 

equations of motion of the system. This systematic method is often used for more 

complicated systems such as robot manipulators with multiple joints. 
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More specifically, the equations that describe the motions of the servo and the 

link with respect to the servo motor voltage, i.e. the dynamics, will be obtained using 

the Euler-Lagrange equation: 

 
2

i
i i

L L Q
t q q
¶ ¶

- =
¶ ¶ ¶&

 (3.21.) 

 

The variables iq  are called generalized coordinates. For this system let 

 

( ) ( ) ( )Tq t t tq a= é ùë û  (3.22.) 

 

where, as shown in Figure 3.6, ( )tq  is the servo angle and  

( )ta  is the flexible link angle. The corresponding velocities are 

 

( ) ( ) ( )T t t
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t t
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With the generalized coordinates defined, the Euler-Lagrange equations for the 

rotary flexible link system are 
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 (3.24.) 

 

The Lagrangian of a system is defined 

 

L T V= -  (3.25.) 
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where T  is the total kinetic energy of the system and V  is the total potential energy 

of the system. Thus the Lagrangian is the difference between a system's kinetic and 

potential energies. 

The generalized forces iQ  are used to describe the non-conservative forces 

(e.g., friction) applied to a system with respect to the generalized coordinates. In this 

case, the generalized force acting on the rotary arm is 

 

1 eqQ Bt q= - &  (3.26.) 

 

and acting on the link is 

 

2 lQ Ba= - &  (3.27.) 

 

The torque applied at the base of the rotary arm (i.e., at the load gear) is generated by 

the servo motor as described by the equation 

 

( )g g m t m g m

m

K k V K k
R

h h q
t

-
=

&
 (3.28.) 

 

Again, the Euler-Lagrange equations is a systematic method of finding the 

equations of motion (EOMs) of a system. Once the kinetic and potential energy are 

obtained and the Lagrangian is found, then the task is to compute various 

derivatives to get the EOMs. 

Translational kinetic equation is defined as 

 

21
2

T mv=  (3.29.) 

 

where m  is the mass of the object and v  is the linear velocity. Rotational kinetic 

energy is described as 
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21
2

T Jw=  (3.30.) 

 

where J  is the moment of inertia of the object and w  is its angular rate. 

Potential energy comes in different forms. Typically in mechanical system we 

deal with gravitational and elastic potential energy. The relative gravitational 

potential energy of an object is 

 

gV mg h= D  (3.31.) 

 

where m  is the object mass and hD  is the change in altitude of the object. The 

equation for elastic potential energy, i.e., the energy stored in a spring, is 

 

21
2eV K x= D  (3.32.) 

 

where K  is the spring stiffness and xD  is the linear or angular change in position. 

Using Equation (3.32.), the elastic energy stored in the spring equals 

 

21
2 sV K a=  (3.33.) 

 

This is the total potential energy that is store in the system. 

Using the Equation (3.30), the total kinetic energy from the SRV02 rotating and the 

deflection of the link is defined as  

 

( )221 1
2 2eq lT J Jq q a= + +& & &  (3.34.) 

 

Using Equation (3.25), the total kinetic energy from the SRV02 rotating and the 

deflection of the link is 
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( )22 21 1 1
2 2 2eq l sL J J Kq q a a= + + -& & &  (3.35.) 

 

Compute the derivatives required by Equation (3.24.) and substitute the generalized 

force, 1Q , given in Equation (3.26.). The derivatives are 
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Substituting the above answers and Equation (3.26.) into Equation (3.24.) gives the 

first equation of motion 

 

( )eq l l eqJ J J Bq a q t+ + + =&& &&&  (3.37.) 

 

Compute the derivatives required by Equation (3.24.) and substitute the generalized 

force, 2Q , given in Equation (3.27.). The derivatives are 
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 (3.38.) 

 

Substituting the above derivative and Equation (3.27.) into Equation (3.24.) gives the 

second equation of motion 

 

0l l l sJ J B Kq a q a+ + + =&& &&&  (3.39.) 
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Subtract equation (3.37.) from (3.39.) and set 0lB =  to obtain the first equation of 

motion 

 

1eq s

eq eq eq

B K
J J J

q q a t= - + +&& &&  (3.40.) 

 

Substitute this into Equation (3.39.) 

 

1 0

                1

eq s
l l s

eq eq eq

l eq l l
l s

eq eq eq

B KJ J K
J J J

J B J JJ K
J J J

q a t a a

q a a t

æ ö
- + + + + =ç ÷ç ÷

è ø
æ ö

- + + + = -ç ÷ç ÷
è ø

&& &&

&& &&

 (3.41.) 

 

Table 3.2. Physical parameters of the flexible-link robotic manipulator 
Symbol Description Value Unit 

lL  Flexible link length 41.9 Cm 

lm  Flexible link mass 0.065 kg 

lJ  Flexible link moment of intertia 0.0038 kg.m2 

mR  Motor armature resistance 2.6 Ω 

gK  Total gear ratio 70  

tk  Motor torque constant 0.00767 N.m/A 

mk  Motor back-EMF constant 0.00767 V.s/rad 

gh  Gearbox efficiency 0.90  

mh  Motor efficiency 0.69  

eqJ  Equivalent moment of inertia 0.002 kg.m2 

eqB  Equivalent viscous damping 
coefficient 

0.004 N.m.s/rad 

sK  Experimentally determined 
stiffness for flexible link 

1.3 N.m./rad 

a  Tip deflection  rad 
q  Position of load angle  rad 

mV  DC input voltage  V 
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Solve for a&&  to obtain the second equation of motion 

 

1eq l eq
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Figure 3.8. Simulink diagram of flexible link robotic manipulator 
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Figure 3.9. Simulink diagram of DC motor for flexible link manipulator 
 

3.1.2. Verification and Validation of Simulation Models 

 

In order to perform a comparative study of the input shaping methods and the 

experimental results of the techniques, previously described experimental setups and 

the presented mathematical model of the systems are used. The experimental setups are 

driven using step input and the resulting residual vibrations as well as cart/servo 

position are measured. The Matlab (2009a) models of the systems are also provided 

with the same input commands to demonstrate the correlation between the theoretical 

and experimental results obtained. The results of step input for the Matlab models of 

the systems and the experimental setups are presented in Figures 3.10 and 3.11. 
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Figure 3.10. Simulation and experimental results of single pendulum gantry system 

for step input 
 

In Figure 3.10, the reference input and displacement of cart are given in 

meters. On the other hand, the pendulum oscillation is given in unit of radians. 
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Figure 3.11. Simulation and experimental results of flexible link manipulator for step 

input 
 

In Figure 3.11, the reference input, servo motor angle and flexible link tip 

deflection are given in unit of radians. In Figures 3.10 and 3.11, it can be seen that 

the simulation and test results match up very closely. This simply indicates that the 

behavior of the developed Matlab model and the experimental setup are very much 

the same. This is mainly due to the accurate mathematical model of the mechanical 

and the electronic systems. 
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3.1.3. Parameter Estimation from Experimental Data 
 

Input shaping is a command generation technique that reduces vibration by 

suitably shaping the reference signal such that the vibratory modes of the system are 

cancelled. Shaped command profiles are generated by convolving a sequence of 

impulses or solving special functions for the desired command signal. Shaped 

command profiles are generated by using estimates of the system frequencies and 

damping. In contrast, most systems have errors in estimated damping and natural 

frequencies which can result in significant residual errors when a rest-to-rest 

manoeuvre is performed.   

 

 
Figure 3.12. Illustrative decaying displacement time history 

 

The logarithmic decrement is often used to estimate frequency and damping 

values from the transient response of a single degree of freedom system. The 

technique is very simple to employ and provides quick estimates without the need for 

extensive computation. Figure 3.12 represents a typical decaying time history trace 

for a single degree of freedom oscillator in which 1a , 2a , etc, are successive 

amplitude peaks at times 1t , 2t , etc. Td  and dw  are the damped natural period and 

frequency, respectively. The period of oscillation, 2 dTd p w= , can be measured 

directly from crossing points on the zero axis, as shown in Figure 3.12.  

To determine the damping ratio from the rate of decay of the oscillation,  
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The logarithm of the ratio of succeeding amplitudes is called the logarithmic 

decrement. Thus, 
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Once the amplitudes 1a  and na  are measured and the logarithmic decrement is 
calculated, the damping ratio z  is found from (Ogata, 2003) 
 

1

2

2 1

1 ln
1

14 ln
1

n

n

a
n a

a
n a

z

p

æ ö
ç ÷- è ø=

é ùæ ö
+ ê úç ÷- è øë û

 (3.46.) 

 

Figures 3.10 and 3.11, shows the step response of the single pendulum gantry and 

flexible link manipulator, respectively. The logarithmic decrement method was 

applied to data obtained from experimental setup systems effectively. The resulting 

damping ratios and frequencies for the Single pendulum gantry and flexible link 

manipulator are shown in table 3.3. 

 

Table 3.3. Command shaping calculation parameters for experimental setups 
Experimental Setup z  dw  
Single Pendulum Gantry 0.004 4.789 
Flexible-Link Robotic 
Manipulator 

0.07 20.4 
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3.2. Methods 

 

3.2.1. Proposed Input Shaping Technique: Modified Cycloid Plus Ramped 

Versine Plus Ramp (M-CPRVPR) Reference Function 

 

The proposed input shaping method (M-CPRVPR) utilises the cycloid plus 

ramped versine plus ramp (CPRVPR) reference function presented in section 2.5.3.2. 

The CPRVPR reference input consists of three functions. The total distance to be 

covered from the beginning to end of a move within a specified time is the sum of 

the distances to be travelled by each of the three functions within the same travel 

time. By adjusting excursion distance of each function, vibration can be eliminated 

provided that the specified move time and the total distance are unchanged. Each 

component of the reference command creates oscillations such that these oscillations 

cancel each other and no vibration results. CPRVPR Method, the Equations (2.33), 

(2.34), (2.35) and (2.36) are used to generate the command input required for the 

system. The proposed method, on the other hand, divides the travelling time into two 

or more sections and calculates the command input as two or more separate inputs 

and then joins them to form the new input. The calculations for the new method are 

as follows where the input is divided into two or more sections and each one is 

calculated independently to form the other part of the input signal.  
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where L  is total travelling distance and t  is total travelling time. 
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where 1L  is the maximum excursion distance to be travelled by ramp motion profile, 

2L  is the maximum excursion distance to be travelled by cycloid motion profile, 3L  

is the maximum excursion distance to be travelled by ramped versine motion profile. 

Variations of 1L , 2L  and 3L  is possible with traveling time t  to result in an 

oscillation free displacement of the system. Furthermore, total distance can be 

written as 1 2 3L L L L= + + . 
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(3.51.) 

 

As defined in Equations (3.47) to (3.51), the new method allows virtually 

division of the motion of the system into two or more steps. Because the first step 

completes with almost steady motion with relatively reduced vibration levels, the 

second part of the motions starts with the advantage of very little or almost no 
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residual vibrations. Consequently, the result of the second part of the motion yields 

better performance relative to the CPRVPR reference function. 

 

 
Figure 3.13. Recursion of cycloid plus ramped versine plus ramp function and 

sensitivity curve for a total travelling distance 1L =  and travelling 
time of 0.425 dTt =  

 

As illustrated in Figures 3.13 and 3.14, the presented method consists of two 

or more components where the resulting residual vibration cancels out due to reverse 

act. There is no difference between the signals applied to the system in two or more 

parts of the input signal. In fact, the same signal is repeated in each part. By doing 

this, it is not the natural period of the system used in calculation of the signal timing 
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and related calculations; it is the arbitrarily chosen travelling time that is divided into 

two or more equal parts that is used in application of the input signal. These features 

of the input signals can be seen clearly in the figures. 

 

 
Figure 3.14. Recursion of cycloid plus ramped versine plus ramp function and 

sensitivity curve for a total travelling distance 1L =  and travelling time 
of 0.5 dTt =  

 

The proposed method considers a trajectory based on a cycloidal and versine 

motion, which is commonly used as a high speed cam profile, continuous throughout 

one cycle, plus a ramp. The amplitude of the ramp, the cycloidal function and versine 

function are determined such that total travelling distance and the transportation time 
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conditions are satisfied. Then the resulting trajectory is convolved desired times to 

obtain a twice or more shaped input. The algorithm can be extended indefinitely with 

repeated recursion of the motion profile equation. For each recursion, an additional 

part is added to the shaper and the shaper is lengthened by recursion period of the 

frequency. This trade-off is typical of the input shaper design process, increasing 

insensitivity usually requires increasing the length of travelling time of the input 

shaper. These features of the input signals can be seen clearly in the Figures 3.13 and 

3.14. It is believed that this method contributes to the efforts in reducing the 

vibration of multi mode systems in the presence of uncertainty in the dynamic 

parameters of flexible system such as its modal natural frequencies and the damping 

ratios.  

Figures 3.13 and 3.14 simulation results shows that proposed new technique is 

simple and easy to implement, and can be considered as a versatile and effective way 

to determine a trajectory resulting in reduced or eliminated residual vibrations of 

flexible systems with high robustness. The advantage of the proposed technique is 

that it neither limits nor increases the move time, i.e. no time limitation or time 

penalty. Most conventional input shaping methods, however, tend to increase the 

travelling time by at least a half damped period or more.  
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4. RESULTS AND DISCUSSIONS 

 

One of the methods used to reduce or eliminate the residual vibrations is to 

modify the input command by using the system parameters that are known 

beforehand. In order to eliminate the residual vibrations completely, the system 

parameters must be known very accurately. In realistic systems, achieving such level 

of accuracy may not always be possible. To address the problem and to provide 

practical solutions, in this thesis, new residual vibration elimination methods are 

introduced. In this section of the presented work, the simulations and the 

experimental results of the new methods are presented. The simulation and the 

experimental results show that the residual vibrations are considerably decreased 

with a high degree of robustness in the presence of system parameters uncertainty. 

These new methods prove to be useful especially in the case of uncertain parameters 

of estimated or predicted systems. It is shown that the presented new technique is 

capable of handling high levels of uncertainty and able to successfully eliminate or 

reduce residual vibrations in flexible systems. The present chapter provides details 

on theoretical and experimental results of these techniques applied to the single 

pendulum gantry crane and flexible link robotic manipulator systems where a 

comparative study of robustness performance is also provided. Simulation and 

experimental results show that the oscillations are considerably decreased with a high 

degree of robustness in the presence of system parameters uncertainty. 

In order to perform a comparison amongst the input shaping methods and the 

experimental results of the techniques, previously described experimental setups and 

the mathematical models of the systems are used. The experimental setups are driven 

using each input command shaping method individually. The resulting residual 

vibrations as well as cart or servo positions are also measured during each trial. In 

order to demonstrate the correlation between the theoretical and experimental results 

obtained, the Matlab (2009a) models of the systems are also provided with the same 

input commands as the experimental models. In order to demonstrate the effectiveness 

of the proposed techniques, the simulation and the experimental results are compared 

with the conventional input shaping methods. 
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4.1. Results 

 

4.1.1. Experiment Set 1: Single Pendulum Gantry System  

 

In this section, to validate the proposed techniques and to demonstrate the 

practical effectiveness of it over the discussed conventional methods, it has been 

tested in real time experiments using a single pendulum gantry system. This gantry 

system is fabricated by Quanser Inc. (Quanser Inc., 2012a). The detailed information 

upon the utilized gantry system can be found in Section 3.1.1 and from the website of 

the company (Quanser Inc.). 

 

4.1.1.1. Zero Vibration (ZV) Shaper 

 

 
Figure 4.1. ZV shaper with experimental and simulation results for (a) -%25, (b) %0, 

(c) +%25 estimation error of natural frequency 



4. RESULTS AND DISCUSSIONS                                                   Çağlar CONKER 

 97 

In Figures 4.1, the simulation and experimental results of ZV shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.1 is plotted with estimation 

errors of (a) -%25, (b) %0, (c) +%25, respectively. 

 

 
Figure 4.2. Pendulum positions of different predicted natural frequencies for ZV 

shaper related experimental results 
 

 
Figure 4.3. Theoretical and experimental sensitivity curves for the ZV shaper 
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In Figure 4.1, it can be seen that, the estimation error causes increasing residual 

vibrations of pendulum ranging from 0.948 to 0.839 rad. It can be seen that increasing 

error in estimation of the natural frequency of the system causes increasing residual 

vibrations. These results are also validated in Figure 4.2, where pendulum position of 

different predicted natural frequencies and related sensitivity curves are presented, 

respectively. 

The theoretical and experimental sensitivity curves for the ZV shaper are 

shown in Figure 4.3. The experimental results closely match those predicted by the 

theoretical study. Figure 4.3 shows that the vibration amplitude increases rapidly as 

the estimated frequency deviates from the actual system frequency. 

 

4.1.1.2. Zero Vibration Derivative (ZVD) Shaper  

 

 
Figure 4.4. ZVD shaper with experimental and simulation results for (a) -%25, 

(b) %0, (c) +%25 estimation error of natural frequency 



4. RESULTS AND DISCUSSIONS                                                   Çağlar CONKER 

 99 

In Figures 4.4, the simulation and experimental results of ZVD shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.4 is plotted with estimation 

errors of (a) -%25, (b) %0, (c) +%25, respectively. 

 
Figure 4.5. Pendulum positions of different predicted natural frequencies for ZVD 

shaper related experimental results 
 

In Figure 4.4, it can be seen that, the estimation error causes increasing residual 

vibrations of pendulum ranging from 0.0352 to 0.0306 rad. It can be seen that 

increasing error in estimation of the natural frequency of the system causes increasing 

residual vibrations. These results are also validated in Figure 4.5 and 4.6 where 

pendulum position of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. 

The theoretical and experimental sensitivity curves for the ZVD shaper are 

shown in Figure 4.6. The experimental results closely match those predicted by the 

theoretical study. Figure 4.6 shows that the ZVD shaper is much more insensitive to 

modelling errors than the ZV shaper. However, the ZVD shaper has a time duration 

equal to one period of the vibration frequency, as opposed to the one-half period 

length of the ZV shaper. This trade-off is typical of the input shaper design process, 
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increasing insensitivity usually requires increasing the length of travelling time of the 

input shaper. 

 

 
Figure 4.6. Theoretical and experimental sensitivity curves for the ZVD shaper 
 

4.1.1.3. Zero Vibration Derivative and Derivative (ZVDD) Shaper 

 

In Figures 4.7, the simulation and experimental results of ZVDD shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.7 is plotted with estimation 

errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.7, it can be seen that, 

the estimation error causes increasing residual vibrations of pendulum ranging from 

0.0138 to 0.0107 rad. It can be seen that increasing error in estimation of the natural 

frequency of the system causes increasing residual vibrations. These results are also 

validated in Figure 4.8 and 4.9, where pendulum position of different predicted natural 

frequencies and related sensitivity curves are presented, respectively. 
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Figure 4.7. ZVDD shaper with experimental and simulation results for (a) -%25, 

(b) %0, (c) +%25 estimation error of natural frequency 
 

The theoretical and experimental sensitivity curves for the ZVDD shaper are 

shown in Figure 4.9. The experimental results closely match those predicted by the 

theoretical study. Figure 4.8 and 4.9 shows that the ZVDD shaper is much more 

insensitive to modelling errors than the ZVD shaper. However, the ZVDD shaper has 

a time duration equal to one and a half period of the vibration frequency, as opposed 

to the one period length of the ZVD shaper. The additional robustness gained from 

each higher-order derivative is evident in the plot.  
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Figure 4.8. Pendulum positions of different predicted natural frequencies for ZVDD 

shaper related experimental results 
 

 
Figure 4.9. Theoretical and experimental sensitivity curves for the ZVDD shaper 
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4.1.1.4. Zero Vibration Derivative Derivative Derivative (ZVDDD) Shaper 

 

In Figures 4.10, the simulation and experimental results of ZVDDD shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.10 is plotted with 

estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. 

 

 
Figure 4.10. ZVDD shaper with experimental and simulation results for (a) -%25, 

(b) %0, (c) +%25 estimation error of natural frequency 
 

In Figure 4.10, it can be seen that, the estimation error causes increasing 

residual vibrations of pendulum ranging from 0.0061 to 0.0046 rad. It can be seen that 

increasing error in estimation of the natural frequency of the system not effect residual 
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vibrations. These results are also validated in Figure 4.11 and 4.12 where pendulum 

position of different predicted natural frequencies and related sensitivity curves are 

presented, respectively. 

 

 
Figure 4.11. Pendulum positions of different predicted natural frequencies for 

ZVDDD shaper related experimental results 
 

 
Figure 4.12. Theoretical and experimental sensitivity curves for the ZVDDD shaper 
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Figure 4.11 and 4.12, shows that the ZVDDD shaper is much more 

insensitive to modelling errors than the ZVDD shaper. However, the ZVDDD shaper 

has a time duration equal to two period of the vibration frequency, as opposed to the 

one and a half period length of the ZVDD shaper. The additional robustness gained 

from each higher-order derivative is evident in the plot. The algorithm can be 

extended indefinitely with repeated differentiation of the percentage vibration 

equation. For each differentiation, an additional impulse is added to the shaper and 

the shaper is lengthened by one-half period of the frequency. 

 

 
Figure 4.13. Robustness of the system to uncertainties in the mode frequencies and 

the damping ratios for the ZV, ZVD, ZVDD and ZVDDD Shapers 
 

In Figure 4.13, the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system for the ZV, 

ZVD, ZVDD and ZVDDD input shapers. It can clearly be seen that the variation of 

estimation error (or increasing uncertainty) of damping ratio has relatively reduced 

the effect on the residual vibration of the system. Therefore, the uncertainties on the 
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damping ratio do not play an important role in affecting the behavior of the system 

mainly due to its very low value, i.e. z =0.004. On the other hand, the estimation 

error in natural frequency of the system appears to affect the motion of the system 

and the resulting residual vibration levels.  

 

4.1.1.5. Extra Insensitive (EI) Shaper  

 

 
Figure 4.14. EI shaper with experimental and simulation results for (a) -%25, (b) %0, 

(c) +%25 estimation error of natural frequency 
 

In Figures 4.14, the simulation and experimental results of EI shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.14 is plotted with 

estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.14, it can be 
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seen that, the estimation error causes increasing residual vibrations of pendulum 

ranging from 0.023 to 0.0276 rad. It can be seen that increasing error in estimation of 

the natural frequency of the system causes increasing residual vibrations.  

 

 
Figure 4.15. Pendulum positions of different predicted natural frequencies for EI 

shaper related experimental results 
 

 
Figure 4.16. Theoretical and experimental sensitivity curves for the 5% and 10% EI 

shaper 
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These results are also validated in Figure 4.15 and 4.16 where pendulum position of 

different predicted natural frequencies and related sensitivity curves are presented, 

respectively. 

Unlike the ZV, ZVD, ZVDD and ZVDDD shapers, the Extra Insensitive (EI) 

shaper does not attempt to force the vibration to zero at the modelling frequency. 

Rather, the vibration is limited to some low, but acceptable level of residual 

vibration. The sensitivity curve for an EI shaper designed to limit vibration below 

5% and 10% is shown in Figure 4.16. The length of the EI shaper is the same as that 

of the ZVD shaper, one damped cycle of vibration, but it is considerably more 

robust. Thus, the application of EI shapers is for systems where some small vibration 

is allowable, and the systems parameters are expected to change considerably. 

 

4.1.1.6. Two Hump Extra Insensitive (2H-EI) Shaper 

 

In Figures 4.17, the simulation and experimental results of Two Hump EI (2H-

EI) shaper are illustrated. In the figure, estimation error of ±%25 is introduced to 

natural frequency of the system used in calculation of the input signals. Figure 4.17 is 

plotted with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 

4.17, it can be seen that, the estimation error causes increasing residual vibrations of 

pendulum ranging from 0.0061 to 0.0107 rad. It can be seen that increasing error in 

estimation of the natural frequency of the system does not seem to important affect the 

residual vibrations. These results are also validated in Figure 4.18 and 4.19 where 

pendulum position of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. 
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Figure 4.17. Two Hump EI shaper with experimental and simulation results for (a) -

%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

The theoretical and experimental sensitivity curves for two-hump EI shapers 

designed to limit vibration below 5% and 10% are shown in Figure 4.19. The 

experimental results closely match those predicted by the theoretical study. As with 

the derivative-method (ZVD, ZVDD and ZVDDD) shapers, the price for increased 

robustness is a corresponding increase in shaper duration. Note, however, that the 

penalty is not uniform across all shapers. The Two-Hump EI shaper has the same 

duration as the ZVDD shaper. However, the Two-Hump EI shapers have much more 

robustness, as can be seen in Figure 4.18 and 4.19. 
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Figure 4.18. Pendulum positions of different predicted natural frequencies for Two 

Hump EI shaper related experimental results 
 

 
Figure 4.19. Theoretical and experimental sensitivity curves for the 5% and 10% 

Two Hump EI shaper 
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4.1.1.7. Three Hump Extra Insensitive (3H-EI) Shaper 
 

 
Figure 4.20. Three Hump EI shaper with experimental and simulation results for (a) -

%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

In Figures 4.20, the simulation and experimental results of Three Hump EI 

shaper (3H-EI) are illustrated. In the figure, estimation error of ±%25 is introduced to 

natural frequency of the system used in calculation of the input signals. Figure 4.20 is 

plotted with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 

4.20, it can be seen that, the estimation error causes increasing residual vibrations of 

pendulum ranging from 0.0061 to 0.0092 rad. It can be seen that increasing error in 

estimation of the natural frequency of the system does not seem to important affect the 

residual vibrations. These results are also validated in Figure 4.21 and 4.22 where 
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pendulum position of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. 

 

 
Figure 4.21. Pendulum positions of different predicted natural frequencies for Three 

Hump EI shaper related experimental results 
 

 
Figure 4.22. Theoretical and experimental sensitivity curves for the 5% and 10% Three 

Hump EI shaper 
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The sensitivity curves for three-hump EI shapers designed to limit vibration 

below 5% and 10% are shown in Figure 4.22. Note that the three-hump EI shaper 

suppresses vibration over the entire range shown. As with the derivative-method 

shapers (ZVD, ZVDD and ZVDDD), the price for increased robustness is a 

corresponding increase in shaper duration. Note, however, that the penalty is not 

uniform across all shapers. The Three-Hump EI shaper has the same duration as the 

ZVDDD shaper. However, the Three-Hump EI shapers have much more robustness, 

as can be seen in Figure 4.21 and 4.22. 

 

 
Figure 4.23. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the EI, Two Hump EI and Three Hump EI input 
shapers 

 

In Figure 4.23, the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system for the EI, 2H-

EI and 3H-EI input shapers. It can clearly be seen that the variation of estimation 

error (or increasing uncertainty) of damping ratio has relatively reduced the effect on 
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the residual vibration of the system. Therefore, the uncertainties on the damping ratio 

do not play an important role in affecting the behavior of the system mainly due to its 

very low value, i.e. z =0.004.  

 

4.1.1.8. Modified Input Shaper (MIS) 
 

 
Figure 4.24. MIS-ZV-3 Impulse shaper with experimental and simulation results for 

(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

In Figures 4.24, the simulation and experimental results of MIS ZV 3 Impulse 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.24 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.24, it 

can be seen that, the estimation error causes increasing residual vibrations of pendulum 
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ranging from 0.0536 to 0.0767 rad. It can be seen that increasing error in estimation of 

the natural frequency of the system causes increasing residual vibrations. These results 

are also validated in Figure 4.26 and 4.32 where pendulum position of different 

predicted natural frequencies and related sensitivity curves are presented, respectively. 

 

 
Figure 4.25. MIS-ZV-4 Impulse shaper with experimental and simulation results for 

(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

In Figures 4.25, the simulation and experimental results of MIS ZV 4 impulse 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.25 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.25, it 

can be seen that, the estimation error causes increasing residual vibrations of pendulum 

ranging from 0.0447 to 0.069 rad. It can be seen that increasing error in estimation of 
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the natural frequency of the system causes increasing residual vibrations. These results 

are also validated in Figure 4.27 and 4.32 where pendulum position of different 

predicted natural frequencies and related sensitivity curves are presented, respectively. 

 

 
Figure 4.26. Pendulum positions of different predicted natural frequencies for MIS-

ZV-3 Impulse shaper related experimental results 
 

 
Figure 4.27. Pendulum positions of different predicted natural frequencies for MIS-

ZV-4 Impulse shaper related experimental results 
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In Figures 4.28, the simulation and experimental results of MIS ZV 5 impulse 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.33 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.33, it 

can be seen that, the estimation error causes increasing residual vibrations of pendulum 

ranging from 0.0429 to 0.069 rad. It can be seen that increasing error in estimation of 

the natural frequency of the system causes increasing residual vibrations. These results 

are also validated in Figure 4.30 and 4.32 where pendulum position of different 

predicted natural frequencies and related sensitivity curves are presented, respectively. 

 

 
Figure 4.28. MIS-ZV-5 Impulse shaper with experimental and simulation results for 

(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
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Figure 4.29. MIS-ZVD-6 Impulse shaper with experimental and simulation results 

for (a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

In Figures 4.29, the simulation and experimental results of MIS ZVD 6 impulse 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.29 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.29, it 

can be seen that, the estimation error causes increasing residual vibrations of pendulum 

ranging from 0.0184 to 0.0245 rad. It can be seen that increasing error in estimation of 

the natural frequency of the system causes increasing residual vibrations. Figure 4.29 

shows that the MIS-ZVD shaper is much more insensitive to modelling errors than 

the MIS-ZV shaper. These results are also validated in Figure 4.31 and 4.32 where 
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pendulum positions of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. 

 
Figure 4.30. Pendulum positions of different predicted natural frequencies for MIS-

ZV-5 Impulse shaper related experimental results 
 

 
Figure 4.31. Pendulum positions of different predicted natural frequencies for MIS-

ZVD-6 Impulse shaper related experimental results 
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Figure 4.32. Theoretical and experimental sensitivity curves for the Modified Input 

Shapers 
 

Theoretical and experimental sensitivity plots for three to five-impulse MIS-

ZV shapers and six impulse MIS-ZVD shaper are shown in Fig. 4.32. For each 

shaper, the experimental results closely follow the theoretical results. Convolving 

MISZV shapers of higher number of impulses results in more robust MISZVD 

shapers, at the cost of increased shaper duration. One can see that the additional 

impulses only provide a minimal increase in shaper insensitivity for MIS-ZV 

shapers. The 6-Impulse MISZVD shaper, however, exhibits good robustness to 

modelling errors in natural frequency. It should be noted that a 4-impulse MISZVD 

shaper is the traditional ZVD shaper.  

In Figure 4.33, the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system for various 

MIS techniques. It can clearly be seen that the variation of estimation error (or 

increasing uncertainty) of damping ratio has relatively reduced effect on the residual 

vibration of the system. Therefore, the uncertainties on the damping ratio do not play 

an important role in affecting the behavior of the system due to its very low value, 
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i.e. z =0.004. On the other hand, the estimation error in natural frequency of the 

system appears to affect the motion of the system and the resulting residual vibration 

levels.  

 

 
Figure 4.33. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the Modified Input Shapers 
 

4.1.1.9. Cycloid Plus Ramped Versine Plus Ramp (CPRVPR) Function 
 

In Figures 4.34, the simulation and experimental results of CPRVPR reference 

function are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.34 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. Figure 4.34 shows 

that the length of the CPRVPR reference function is the same as that of the ZV 

shaper, half damped cycle of vibration. In Figure 4.34, it can be seen that, the 

estimation error causes increasing residual vibrations of pendulum ranging from 
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0.0935 to 0.1058 rad. It can be seen that increasing error in estimation of the natural 

frequency of the system causes increasing residual vibrations. These results are also 

validated in Figure 4.35 and 4.36 where pendulum positions of different predicted 

natural frequencies and related sensitivity curves are presented, respectively. 

 

 
Figure 4.34. CPRVPR reference function with experimental and simulation results 

for (a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

The theoretical and experimental sensitivity curves for the CPRVPR 

reference function are shown in Figure 4.36. The experimental results closely match 

those predicted by the theoretical study. Figure 4.36 shows that the vibration 

amplitude increases rapidly as the estimated frequency deviates from the actual 

system frequency. The length of the CPRVPR reference function is the same as that 
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of the ZV shaper, half damped cycle of vibration. However, the ZV shaper has 

slightly more robust to modelling errors. 

 

 
Figure 4.35. Pendulum positions of different predicted natural frequencies for the 

CPRVPR reference function related experimental results 
 

 
Figure 4.36. Theoretical and experimental sensitivity curves for the CPRVPR 

reference function 
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Figure 4.37. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the CPRVPR reference function 
 

In Figure 4.37, the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system. It can clearly 

be seen that the variation of estimation error (or increasing uncertainty) of damping 

ratio has relatively reduced the effect on the residual vibration of the system. 

Therefore, the uncertainties on the damping ratio do not play an important role in 

affecting the behavior of the system mainly due to its very low value, i.e. z =0.004. 

On the other hand, the estimation error in natural frequency of the system appears to 

affect the motion of the system and the resulting residual vibration levels.  

 

4.1.1.10. Hybrid Input Shaper (HIS) 

 

In Figures 4.38, the simulation and experimental results of Hybrid Input 

Shaper (HIS) are illustrated. In the figure, estimation error of ±%25 is introduced to 

natural frequency of the system used in calculation of the input signals. Figure 4.38 is 

plotted with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. The length 
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of the Hybrid input shaper is the same as that of the ZVD shaper, one damped cycle 

of vibration. In Figure 4.38, it can be seen that, the estimation error causes increasing 

residual vibrations of pendulum ranging from 0.0352 to 0. 0398 rad. It can be seen that 

increasing error in estimation of the natural frequency of the system causes increasing 

residual vibrations. These results are also validated in Figure 4.39 and 4.40 where 

pendulum positions of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. 

 

 
Figure 4.38. Hybrid Input Shaper with experimental and simulation results for (a) -

%25, (b) %0, (c) +%25 estimation error of natural frequency 
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Figure 4.39. Pendulum positions of different predicted natural frequencies for Hybrid 

Input Shaper related experimental results 
 

 
Figure 4.40. Theoretical and experimental sensitivity curves for the Hybrid Input 

Shaper 
 

The theoretical and experimental sensitivity curves for the Hybrid Input 

Shaper (HIS) are shown in Figure 4.40. The experimental results closely match those 
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predicted by the theoretical study. Figure 4.39 and 4.40 shows that the Hybrid Input 

Shaper is much more insensitive to modelling errors than the ZV shaper. However, 

the Hybrid Input Shaper has a time duration equal to one period of the vibration 

frequency, as opposed to the one-half period length of the ZV shaper. The length of 

the Hybrid input shaper is the same as that of the ZVD shaper, one damped cycle of 

vibration, but ZVD shaper is slightly more robust to modelling errors. 

 

 
Figure 4.41. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the Hybrid Input Shaper 
 

In Figure 4.41., the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system. It can clearly 

be seen that the variation of estimation error (or increasing uncertainty) of damping 

ratio has relatively reduced the effect on the residual vibration of the system. 

Therefore, the uncertainties on the damping ratio do not play an important role in 

affecting the behavior of the system mainly due to its very low value, i.e. z =0.004. 

On the other hand, the estimation error in natural frequency of the system appears to 

affect the motion of the system and the resulting residual vibration levels.  
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4.1.1.11. Proposed New Input Shaping Technique: Modified Cycloid Plus 

Ramped Versine Plus Ramp (M-CPRVPR) Reference Function 

 

 
Figure 4.42. Modified CPRVPR2 function for a total travelling distance 0.1L =  and 

travelling time of 0.85 dTt =  with experimental and simulation results 
for (a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 

 

In Figures 4.42 and 4.43, the simulation and experimental results of modified 

two recursions for cycloid plus ramped versine plus ramp (CPRVPR) reference 

function are illustrated for different travelling time. In the figures, estimation error of 

±%25 is introduced to natural frequency of the system used in calculation of the input 

signals. Figure 4.42 and 4.43 are plotted with estimation errors of (a) -%25, (b) %0, (c) 

+%25, respectively. Theoretically, there is no travelling time restriction on the system 
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and this is the main advantages of this reference command. In Figures 4.42 the 

travelling time of the M-CPRVPR reference function 0.85 damped cycle of vibration. 

In Figures 4.43 the travelling time of the M-CPRVPR reference function is the same 

as that of the ZVD, EI and Hybrid shaper, one damped cycle of vibration. 

 

 
Figure 4.43. Modified CPRVPR2 function for a total travelling distance 0.1L =  and 

travelling time of dTt =  with experimental and simulation results for 
(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
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Figure 4.44. Pendulum positions of different predicted natural frequencies for 

recursion of M-CPRVPR2 for a total travelling distance 0.1L =  and 
travelling time of 0.85 dTt =  related experimental results   

 

 
Figure 4.45. Pendulum positions of different predicted natural frequencies for 

recursion of M-CPRVPR2 for a total travelling distance 0.1L =  and 
travelling time of dTt =  related experimental results   
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In Figure 4.42, it can be seen that, the estimation error causes increasing 

residual vibrations of pendulum ranging from 0.0076 to 0. 0552 rad. It can be seen that 

increasing error in estimation of the natural frequency of the system causes increasing 

residual vibrations. These results are also validated in Figure 4.44 and 4.46 where 

pendulum positions of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. 

In Figure 4.43, it can be seen that, the estimation error causes increasing 

residual vibrations of pendulum ranging from 0.0306 to 0. 0352 rad. It can be seen that 

increasing error in estimation of the natural frequency of the system causes increasing 

residual vibrations. These results are also validated in Figure 4.45 and 4.46 where 

pendulum positions of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. 

 

 
Figure 4.46. Theoretical and experimental sensitivity curves for the Modified 

CPRVPR2 reference function for different travelling times 
 

The theoretical and experimental sensitivity curves of the Modified 

CPRVPR2 reference function for different travelling time are shown in Figure 4.46. 
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The experimental results closely match those predicted by the theoretical study. The 

Modified CPRVPR2 reference function has a time duration equal to 0.85 period of 

the vibration frequency, as opposed to the one period length of the ZVD shaper. 

Theoretically, there is no travelling time restriction on the system and this is the main 

advantages of this reference command. Figure 4.44 and 4.46 shows that the Modified 

CPRVPR2 reference function is much more insensitive to modelling errors than the 

ZVD shaper. 

 

 
Figure 4.47. Modified CPRVPR3 function for a total travelling distance 0.1L =  and 

travelling time of 1.275 dTt =  with experimental and simulation results 
for (a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
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Figure 4.48. Modified CPRVPR3 function for a total travelling distance 0.1L =  and 

travelling time of 1.5 dTt =  with experimental and simulation results for 
(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 

 

In Figures 4.47 and 4.48, the simulation and experimental results of modified 

three recursions for cycloid plus ramped versine plus ramp (M-CPRVPR3) reference 

function are illustrated for different travelling time. In the figures, estimation error of 

±%25 is introduced to natural frequency of the system used in calculation of the input 

signals. Figure 4.47 and 4.48 are plotted with estimation errors of (a) -%25, (b) %0, (c) 

+%25, respectively. Theoretically, there is no travelling time restriction on the system 

and this is the main advantages of this reference command. In Figures 4.47 the 

travelling time of the M-CPRVPR3 reference function 1.275 damped cycle of 

vibration. 
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Figure 4.49. Pendulum positions of different predicted natural frequencies for 

recursion of M-CPRVPR3 for a total travelling distance 0.1L =  and 
travelling time of 1.275 dTt =  related experimental results   

 

 
Figure 4.50. Pendulum positions of different predicted natural frequencies for 

recursion of M-CPRVPR3 for a total travelling distance 0.1L =  and 
travelling time of 1.5 dTt =  related experimental results  
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In Figures 4.48 the travelling time of the M-CPRVPR3 reference function is 

the same as that of the ZVDD and 2 Hump EI Shaper, one and a half damped cycle 

of vibration. In Figure 4.47, it can be seen that, the estimation error causes increasing 

residual vibrations of pendulum ranging from 0.0061 to 0. 0306 rad. It can be seen that 

increasing error in estimation of the natural frequency of the system causes increasing 

residual vibrations. These results are also validated in Figure 4.49 and 4.51 where 

pendulum positions of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. In Figure 4.48, it can be seen that, the estimation 

error causes increasing residual vibrations of pendulum ranging from 0.0107 to 0. 0092 

rad. It can be seen that increasing error in estimation of the natural frequency of the 

system causes slightly increasing residual vibrations.  These results are also validated 

in Figure 4.50 and 4.51 where pendulum positions of different predicted natural 

frequencies and related sensitivity curves are presented, respectively. 

 

 
Figure 4.51. Theoretical and experimental sensitivity curves for the Modified 

CPRVPR3 reference function for different travelling times 
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The theoretical and experimental sensitivity curves of the Modified 

CPRVPR3 reference function for different travelling time are shown in Figure 4.56. 

The experimental results closely match those predicted by the theoretical study. The 

Modified CPRVPR3 reference function has a time duration equal to 1.275 period of 

the vibration frequency, as opposed to the one and a half period length of the ZVDD 

shaper. Theoretically, there is no travelling time restriction on the system and this is 

the main advantages of this reference command. 

 

 
Figure 4.52. Modified CPRVPR4 function for a total travelling distance 0.1L =  and 

travelling time of 1.7 dTt =  with experimental and simulation results for 
(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
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In Figures 4.52 and 4.53, the simulation and experimental results of modified 

four recursions for cycloid plus ramped versine plus ramp (M-CPRVPR4) reference 

function are illustrated for different travelling time. In the figures, estimation error of 

±%25 is introduced to natural frequency of the system used in calculation of the input 

signals. Figure 4.52 and 4.53 are plotted with estimation errors of (a) -%25, (b) %0, (c) 

+%25, respectively. Theoretically, there is no travelling time restriction on the system 

and this is the main advantages of this reference command. In Figures 4.52 the 

travelling time of the M-CPRVPR4 reference function 1.7 damped cycle of vibration. 

 

 
Figure 4.53. Modified CPRVPR4 function for a total travelling distance 0.1L =  and 

travelling time of 2 dTt =  with experimental and simulation results for 
(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
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Figure 4.54. Pendulum positions of different predicted natural frequencies for 

recursion of M-CPRVPR4 for a total travelling distance 0.1L =  and 
travelling time of 1.7 dTt =  related experimental results 

 

 
Figure 4.55. Pendulum positions of different predicted natural frequencies for 

recursion of M-CPRVPR4 for a total travelling distance 0.1L =  and 
travelling time of 2 dTt =  related experimental results 
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In Figures 4.53 the travelling time of the M-CPRVPR4 reference function is 

the same as that of the ZVDDD and 3 Hump EI Shaper, two damped cycle of 

vibration. 

In Figure 4.52, it can be seen that, the estimation error causes increasing 

residual vibrations of pendulum ranging from 0.0092 to 0. 0184 rad. It can be seen that 

increasing error in estimation of the natural frequency of the system causes slightly 

increasing residual vibrations. These results are also validated in Figure 4.54 and 4.56 

where pendulum positions of different predicted natural frequencies and related 

sensitivity curves are presented, respectively. In Figure 4.53, it can be seen that, the 

estimation error causes increasing residual vibrations of pendulum ranging from 

0.0214 to 0. 0245 rad. It can be seen that increasing error in estimation of the natural 

frequency of the system causes slightly increasing residual vibrations. These results are 

also validated in Figure 4.55 and 4.56 where pendulum positions of different predicted 

natural frequencies and related sensitivity curves are presented, respectively. 

 

 
Figure 4.56. Theoretical and experimental sensitivity curves for the Modified 

CPRVPR4 reference function for different travelling times 
 



4. RESULTS AND DISCUSSIONS                                                   Çağlar CONKER 

 140 

The theoretical and experimental sensitivity curves of the Modified 

CPRVPR4 reference function for different travelling time are shown in Figure 4.56. 

The experimental results closely match those predicted by the theoretical study. The 

Modified CPRVPR4 reference function has a time duration equal to 1.7 period of the 

vibration frequency, as opposed to the two period length of the ZVDDD shaper. 

Theoretically, there is no travelling time restriction on the system and this is the main 

advantages of this reference command. 
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Figure 4.57. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the various M-CPRVPR reference functions 
 

In Figure 4.57., the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system for the various 

M-CPRVPR reference functions. It can clearly be seen that the variation of 

estimation error (or increasing uncertainty) of damping ratio has relatively reduced 

the effect on the residual vibration of the system. Therefore, the uncertainties on the 
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damping ratio do not play an important role in affecting the behavior of the system 

mainly due to its very low value, i.e. z =0.004. On the other hand, the estimation 

error in natural frequency of the system appears to affect the motion of the system 

and the resulting residual vibration levels.  

 

4.1.2. Experiment Set 2: Flexible Link Robotic Manipulator 

 
In this section to validate the proposed techniques and to demonstrate the 

practical effectiveness of it over the discussed conventional methods, it has been 

tested in real time experiments using a flexible link robotic manipulator. This 

manipulator arm is fabricated by Quanser Inc (Quanser Inc., 2012b). The detailed 

information upon the utilized flexible link manipulator can be found in Section 3.1.2 

and from the website of the company (Quanser Inc.). 

 

4.1.2.1. Zero Vibration (ZV) Shaper 

 

In Figures 4.58, the simulation and experimental results of ZV shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.58 is plotted with 

estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. 

In Figure 4.58, it can be seen that, the estimation error causes increasing 

residual vibrations of tip deflection ranging from 0.112 to 0.1353 rad. The time delay 

of the Zero Vibration (ZV) shaper is half the period of the system vibration. It can be 

seen that increasing error in estimation of the natural frequency of the system causes 

increasing residual vibrations. These results are also validated in Figure 4.59 and 4.60 

where tip deflections of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. The ZV shaper is very sensitive to modelling errors; 

a small errors in the modelling frequency leads to significant residual vibrations. 
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Figure 4.58. ZV shaper with experimental and simulation results for (a) -%25, (b) %0, 

(c) +%25 estimation error of natural frequency 
 

The theoretical and experimental sensitivity curves for the ZV shaper are 

shown in Figure 4.60. The experimental results closely match those predicted by the 

theoretical study. A Zero Vibration, input shaper is the simplest input shaper. The 

only constraints are minimal time and zero vibration at the modelling frequency. 

Figure 4.60 shows that the vibration amplitude increases rapidly as the estimated 

frequency deviates from the actual system frequency. The ZV input shaper is often 

not very effective on real systems because it is sensitive to modelling errors and 

system nonlinearities. These results are validated in Figure 4.59 and 4.60. 
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Figure 4.59.Tip deflection of different predicted natural frequencies for ZV shaper 

related experimental results 
 

 
Figure 4.60. Theoretical and experimental sensitivity curves for the ZV shaper 
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4.1.2.2. Zero Vibration Derivate (ZVD) Shaper 

 

In Figures 4.61, the simulation and experimental results of ZVD shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.63 is plotted with 

estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. 

 

 
Figure 4.61. ZVD shaper with experimental and simulation results for (a) -%25, 

(b) %0, (c) +%25 estimation error of natural frequency 
 

In Figure 4.61, it can be seen that, the estimation error causes increasing 

residual vibrations of tip deflection ranging from 0.0436 to 0.0532 rad. The time delay 

of the Zero Vibration Derivative (ZVD) shaper is one period of the system vibration. It 
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can be seen that increasing error in estimation of the natural frequency of the system 

causes increasing residual vibrations. These results are also validated in Figure 4.62 

and 4.63 where tip deflections of different predicted natural frequencies and related 

sensitivity curves are presented, respectively. The ZVD shaper has considerably more 

robustness to modelling errors. It is evident by noting that the width of the ZVD curve 

is much larger than the width of the ZV curve. 

 

 
Figure 4.62. Tip deflection of different predicted natural frequencies for ZVD shaper 

related experimental results 
 

The theoretical and experimental sensitivity curves for the ZVD shaper are 

shown in Figure 4.63. The experimental results closely match those predicted by the 

theoretical study. Figure 4.62 and 4.63 shows that the ZVD shaper is much more 

insensitive to modelling errors than the ZV shaper. However, the ZVD shaper has a 

time duration equal to one period of the vibration frequency, as opposed to the one-

half period length of the ZV shaper. This trade-off is typical of the input shaper 

design process, increasing insensitivity usually requires increasing the length of 

travelling time of the input shaper. The additional insensitivity of the ZVD shaper 

incurs a time penalty; the ZVD shaper is longer than the ZV shaper by one half 

period of the vibration. This means that a shaped command generated with a ZVD 
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shaper will be one half period of vibration-longer than a ZV shaped command. In 

most cases, this is a small price to pay for the large increase in robustness. 

 

 
Figure 4.63. Theoretical and experimental sensitivity curves for the ZVD shaper 
 

4.1.2.3. Zero Vibration Derivate Derivative (ZVDD) Shaper 

 

In Figures 4.64, the simulation and experimental results of ZVDD shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.64 is plotted with 

estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.64, it can be 

seen that, the estimation error causes increasing residual vibrations of tip deflection 

ranging from 0.0088 to 0.0155 rad. It can be seen that increasing error in estimation of 

the natural frequency of the system causes slightly increasing residual vibrations. 

These results are also validated in Figure 4.65 and 4.66 where tip deflections of 

different predicted natural frequencies and related sensitivity curves are presented, 

respectively. 
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Figure 4.64. ZVDD shaper with experimental and simulation results for (a) -%25, 

(b) %0, (c) +%25 estimation error of natural frequency 
 

The theoretical and experimental sensitivity curves for the ZVDD shaper are 

shown in Figure 4.66. The experimental results closely match those predicted by the 

theoretical study. Figure 4.65 and 4.66 shows that the ZVDD shaper is much more 

insensitive to modelling errors than the ZVD shaper. However, the ZVDD shaper has 

a time duration equal to one and a half period of the vibration frequency, as opposed 

to the one period length of the ZVD shaper. The additional robustness gained from 

each higher-order derivative is evident in the plot. This trade-off is typical of the 

input shaper design process, increasing insensitivity usually requires increasing the 

length of travelling time of the input shaper. 
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Figure 4.65. Tip deflection of different predicted natural frequencies for ZVDD 

shaper related experimental results 
 

 
Figure 4.66. Theoretical and experimental sensitivity curves for the ZVDD shaper 
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4.1.2.4. Zero Vibration Derivate Derivative Derivative (ZVDDD) Shaper 
 

In Figures 4.67, the simulation and experimental results of ZVDDD shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.67 is plotted with 

estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. 

 

 
Figure 4.67. ZVDDD shaper with experimental and simulation results for (a) -%25, 

(b) %0, (c) +%25 estimation error of natural frequency 
 

In Figure 4.67, it can be seen that, the estimation error causes increasing 

residual vibrations of tip deflection ranging from 0.0032 to 0.005549 rad. 
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Figure 4.68. Tip deflection of different predicted natural frequencies for ZVDDD 

shaper related experimental results 
 

 
Figure 4.69. Theoretical and experimental sensitivity curves for the ZVDDD shaper 
 

It can be seen that increase error in estimation of the natural frequency of the 

system does not seem to important affect the residual vibrations. These results are also 
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validated in Figure 4.68 and 4.69 where tip deflections of different predicted natural 

frequencies and related sensitivity curves are presented, respectively. 

Figure 4.68 and 4.69 shows that the ZVDDD shaper is much more insensitive 

to modelling errors than the ZVDD shaper. However, the ZVDDD shaper has a time 

duration equal to two period of the vibration frequency, as opposed to the one and a 

half period length of the ZVDD shaper. The additional robustness gained from each 

higher-order derivative is evident in the plot. The algorithm can be extended 

indefinitely with repeated differentiation of the percentage vibration equation. For 

each differentiation, an additional impulse is added to the shaper and the shaper is 

lengthened by one-half period of the frequency. 

 

 
Figure 4.70. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the ZV, ZVD, ZVDD and ZVDDD Input Shapers 
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In Figure 4.70, the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system for ZV, ZVD, 

ZVDD and ZVDDD input shapers. It can clearly be seen that the variation of 

estimation error (or increasing uncertainty) of damping ratio has relatively reduced 

the effect on the residual vibration of the system. Therefore, the uncertainties of the 

damping ratio do not play an important role in affecting the behavior of the system 

mainly due to its very low value, i.e. z =0.07. On the other hand, the estimation error 

in natural frequency of the system appears to affect the motion of the system and the 

resulting residual vibration levels. 

 

4.1.2.5. Extra Insensitive (EI) Input Shaper 

 

 
Figure 4.71. EI shaper with experimental and simulation results for (a) -%25, (b) %0, 

(c) +%25 estimation error of natural frequency 
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In Figures 4.71, the simulation and experimental results of EI shaper are 

illustrated. In the figure, estimation error of ±%25 is introduced to natural frequency of 

the system used in calculation of the input signals. Figure 4.71 is plotted with 

estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.71, it can be 

seen that, the estimation error causes increasing residual vibrations of tip deflection 

from 0.0233 to 0.0391 rad. It can be seen that increasing error in estimation of the 

natural frequency of the system causes increasing residual vibrations. These results are 

also validated in Figure 4.72 and 4.73 where tip deflections of different predicted 

natural frequencies and related sensitivity curves are presented, respectively. 
 

 
Figure 4.72. Tip deflection of different predicted natural frequencies for EI shaper 

related experimental results 
 

Unlike the ZV, ZVD, ZVDD and ZVDDD shapers, the EI shaper does not 

attempt to force the vibration to zero at the modelling frequency. Rather, the 

vibration is limited to some low, but acceptable level of residual vibration. The 

sensitivity curve for an EI shaper designed to limit vibration below 5% and 10% is 

shown in Figure 4.73. The travelling time of the EI shaper is the same as that of the 

ZVD shaper, one damped cycle of vibration, but it is considerably more robust. Thus, 
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the application of EI shapers is for systems where some small vibration is allowable, 

and the systems parameters are expected to change considerably. 

 

 
Figure 4.73. Theoretical and experimental sensitivity curves for the EI shaper 
 

4.1.2.6. Two Hump Extra Insensitive (2H-EI) Input Shaper 
 

In Figures 4.74, the simulation and experimental results of Two Hump EI 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.74 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.74, it 

can be seen that, the estimation error causes increasing residual vibrations of tip 

deflection from 0.0101 to 0.0121 rad. It can be seen that increase error in estimation of 

the natural frequency of the system does not seem to important affect the residual 

vibrations. These results are also validated in Figure 4.75 and 4.76 where tip 

deflections of different predicted natural frequencies and related sensitivity curves are 

presented, respectively. 
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Figure 4.74. Two Hump EI shaper with experimental and simulation results for (a) -

%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

The sensitivity curves for two-hump EI shapers designed to limit vibration 

below 5% and 10% are shown in Figure 4.76. As with the derivative-method (ZVD, 

ZVDD and ZVDDD) input shapers, the price for increased robustness is a 

corresponding increase in shaper duration. Note, however, that the penalty is not 

uniform across all shapers. The Two-Hump EI shaper has the same duration as the 

ZVDD shaper. However, the Two-Hump EI shapers have much more robustness, as 

can be seen in Figure 4.75 and 4.76. 
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Figure 4.75. Tip deflection of different predicted natural frequencies for Two Hump 

EI shaper related experimental results 
 

 
Figure 4.76. Theoretical and experimental sensitivity curves for the Two Hump EI 

shaper 
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4.1.2.7. Three Hump Extra Insensitive (3H-EI) Input Shaper 

 

In Figures 4.77, the simulation and experimental results of Three Hump EI 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.77 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.77, it 

can be seen that, the estimation error causes increasing residual vibrations of tip 

deflection from 0.0076 to 0.0121 rad.  

 

 
Figure 4.77. Three Hump EI shaper with experimental and simulation results for (a) -

%25, (b) %0, (c) +%25 estimation error of natural frequency 
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Figure 4.78. Tip deflection of different predicted natural frequencies for Three Hump 

EI shaper related experimental results 
 

 
Figure 4.79. Theoretical and experimental sensitivity curves for the Three Hump EI 

shaper 
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It can be seen that increase error in estimation of the natural frequency of the 

system does not seem to important affect the residual vibrations. These results are also 

validated in Figure 4.78 and 4.79 where tip deflections of different predicted natural 

frequencies and related sensitivity curves are presented, respectively. 

The sensitivity curves for three-hump EI shapers designed to limit vibration 

below 5% and 10% are shown in Figure 4.79. Note that the three-hump EI shaper 

suppresses vibration over the entire range shown. As with the derivative-method 

(ZVD, ZVDD and ZVDDD) input shapers, the price for increased robustness is a 

corresponding increase in shaper duration. Note, however, that the penalty is not 

uniform across all shapers. The Three-Hump EI shaper has the same duration as the 

ZVDDD shaper. However, the Three-Hump EI shapers have much more robustness, 

as can be seen in Figure 4.78 and 4.79. 

 

 
Figure 4.80. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the EI, Two Hump EI and Three Hump EI Input 
Shapers 



4. RESULTS AND DISCUSSIONS                                                   Çağlar CONKER 

 161 

In Figure 4.80, the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system for EI, Two 

Hump EI and Three Hump EI input shapers. It can clearly be seen that the variation 

of estimation error (or increasing uncertainty) of damping ratio has relatively reduced 

the effect on the residual vibration of the system. Therefore, the uncertainties on the 

damping ratio do not play an important role in affecting the behaviour of the system 

mainly due to its very low value, i.e. z =0.07. On the other hand, estimation error in 

natural frequency of the system appears to affect the motion of the system and the 

resulting residual vibration levels. 

 

4.1.2.8. Modified Input Shaper (MIS) 

 

 
Figure 4.81. MIS-ZV-3 Impulse shaper with experimental and simulation results for 

(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
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In Figures 4.81, the simulation and experimental results of MIS ZV 3 impulse 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.81 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.81, it 

can be seen that, the estimation error causes increasing residual vibrations of tip 

deflection from 0.0899 to 0.1033 rad. It can be seen that increasing error in estimation 

of the natural frequency of the system causes increasing residual vibrations. These 

results are also validated in Figure 4.82 and 4.89 where tip deflections of different 

predicted natural frequencies and related sensitivity curves are presented, respectively. 

 

 
Figure 4.82. Tip deflection of different predicted natural frequencies for the MIS-

ZV-3 shaper related experimental results 
 

In Figures 4.83, the simulation and experimental results of MIS ZV 4 impulse 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.83 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.83, it 

can be seen that, the estimation error causes increasing residual vibrations of tip 

deflection ranging from 0.0886 to 0.0969 rad. It can be seen that increasing error in 
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estimation of the natural frequency of the system causes increasing residual vibrations. 

These results are also validated in Figure 4.84 and 4.89 where tip deflections of 

different predicted natural frequencies and related sensitivity curves are presented, 

respectively. 

 

 
Figure 4.83. MIS-ZV-4 Impulse shaper with experimental and simulation results for 

(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
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Figure 4.84. Tip deflection of different predicted natural frequencies for the MIS-

ZV-4 shaper related experimental results 
 

In Figures 4.85, the simulation and experimental results of MIS ZV 5 Impulse 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.85 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.85, it 

can be seen that, the estimation error causes increasing residual vibrations of tip 

deflection ranging from 0.0606 to 0.0742 rad. It can be seen that increasing error in 

estimation of the natural frequency of the system causes increasing residual vibrations. 

These results are also validated in Figure 4.86 and 4.89 where tip deflections of 

different predicted natural frequencies and related sensitivity curves are presented, 

respectively. 
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Figure 4.85. MIS-ZV-5 Impulse shaper with experimental and simulation results for 

(a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

 
Figure 4.86. Tip deflection of different predicted natural frequencies for the MIS- 

ZV-5 shaper related experimental results 
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Figure 4.87. MIS-ZVD-6 Impulse shaper with experimental and simulation results 

for (a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

In Figures 4.87, the simulation and experimental results of MIS ZVD 6 Impulse 

shaper are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.87 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. In Figure 4.87, it 

can be seen that, the estimation error causes increasing residual vibrations of tip 

deflection ranging from 0.0280 to 0.0285 rad. It can be seen that increasing error in 

estimation of the natural frequency of the system causes increasing residual vibrations. 

These results are also validated in Figure 4.88 and 4.89 where tip deflections of 

different predicted natural frequencies and related sensitivity curves are presented, 

respectively. 
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Figure 4.88. Tip deflection of different predicted natural frequencies for the MIS-

ZVD-6 shaper related experimental results 
 

 
Figure 4.89. Theoretical and experimental sensitivity curves for the Modified Input 

Shapers 
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Theoretical and experimental sensitivity plots for three to five-impulse MIS-

ZV shapers and six impulse MIS-ZVD shaper are shown in Figure 4.89. For each 

shaper, the experimental results closely follow the theoretical results. One can see 

that the additional impulses only provide a minimal increase in shaper insensitivity 

for MIS-ZV shapers. The 6-Impulse MISZVD shaper, however, exhibits good 

robustness to modelling errors in natural frequency. It should be noted that a 4-

impulse MISZVD shaper is the traditional ZVD shaper. The performance of MISZV 

stands between ZV and ZVD input shapers. The travelling time and robustness 

properties of the MISZV methods stand in between ZV and ZVD methods. Each 

additional impulse to the reference command improves the robustness performance 

while extending the travelling time. 

 

 
Figure 4.90. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the MIS-ZV3, MIS-ZV4, MIS-ZV5 and MIS-ZVD6 
Shapers 
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In Figure 4.90, the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system for various 

MIS techniques. It can clearly be seen that the variation of estimation error (or 

increasing uncertainty) of damping ratio has relatively reduced the effect on the 

residual vibration of the system. Therefore, the uncertainties of the damping ratio do 

not play an important role in affecting the behaviour of the system mainly due to its 

very low value, i.e. z =0.07. On the other hand, the estimation error in natural 

frequency of the system appears to affect the motion of the system and the resulting 

residual vibration levels. 

 

4.1.2.9. Cycloid Plus Ramped Versine Plus Ramp (CPRVPR) Function 

 

 
Figure 4.91. CPRVPR reference function with experimental and simulation results 

for (a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
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In Figures 4.91, the simulation and experimental results of CPRVPR reference 

function are illustrated. In the figure, estimation error of ±%25 is introduced to natural 

frequency of the system used in calculation of the input signals. Figure 4.91 is plotted 

with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. The length of the 

CPRVPR reference function is the same as that of the ZV shaper, half damped cycle 

of vibration. In Figure 4.91, it can be seen that, the estimation error causes increasing 

residual vibrations of tip deflection ranging from 0.0961 to 0.1432 rad. It can be seen 

that increasing error in estimation of the natural frequency of the system causes 

increasing residual vibrations. These results are also validated in Figure 4.92 and 4.93 

where tip deflection of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. 
 

 
Figure 4.92. Tip deflection of different predicted natural frequencies for CPRVPR 

reference function related experimental results 
 

The theoretical and experimental sensitivity curves for the CPRVPR 

reference function are shown in Figure 4.93. The experimental results closely match 

those predicted by the theoretical study. Figure 4.93 shows that the vibration 

amplitude increases rapidly as the estimated frequency deviates from the actual 

system frequency. The length of the CPRVPR reference function is the same as that 
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of the ZV shaper, half damped cycle of vibration. However, the ZV shaper has 

slightly more robust to modelling errors. 

 

 
Figure 4.93. Theoretical and experimental sensitivity curves for the CPRVPR 

reference function 
 

In Figure 4.94, the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system. It can clearly 

be seen that the variation of estimation error (or increasing uncertainty) of damping 

ratio has relatively reduced the effect on the residual vibration of the system. 

Therefore, the uncertainties on the damping ratio do not play an important role in 

affecting the behaviour of the system mainly due to its very low value, i.e. z =0.07. 

On the other hand, the estimation error in natural frequency of the system appears to 

affect the motion of the system and the resulting residual vibration levels. The 

cycloid plus ramped versine plus ramp (CPRVPR) reference function is very 

sensitive to modelling errors; a small errors in the modelling frequency leads to 

significant residual vibrations. 
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Figure 4.94. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the CPRVPR reference function 
 

4.1.2.10. Hybrid Input Shaper (HIS) 

 

In Figures 4.95, the simulation and experimental results of Hybrid Input 

Shaper (HIS) are illustrated. In the figure, estimation error of ±%25 is introduced to 

natural frequency of the system used in calculation of the input signals. Figure 4.95 is 

plotted with estimation errors of (a) -%25, (b) %0, (c) +%25, respectively. The length 

of the Hybrid input shaper is the same as that of the ZVD shaper, one damped cycle 

of vibration. In Figure 4.95, it can be seen that, the estimation error causes increasing 

residual vibrations of tip deflection ranging from 0.038 to 0. 055 rad. It can be seen 

that increasing error in estimation of the natural frequency of the system causes 

increasing residual vibrations.  These results are also validated in Figure 4.96 and 4.97 

where tip deflections of different predicted natural frequencies and related sensitivity 

curves are presented, respectively. 
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Figure 4.95. Hybrid Input Shaper with experimental and simulation results for (a) -

%25, (b) %0, (c) +%25 estimation error of natural frequency 
 

The theoretical and experimental sensitivity curves for the Hybrid Input 

Shaper are shown in Figure 4.97. The experimental results closely match those 

predicted by the theoretical study. Figure 4.96 and 4.97 shows that the Hybrid Input 

Shaper is much more insensitive to modelling errors than the ZV input shaper. 

However, the Hybrid Input Shaper has a time duration equal to one period of the 

vibration frequency, as opposed to the one-half period length of the ZV shaper. The 

length of the Hybrid input shaper is the same as that of the ZVD shaper, one damped 

cycle of vibration, but ZVD shaper is slightly more robust to modelling errors. 
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Figure 4.96. Tip deflection of different predicted natural frequencies for the Hybrid 

Input Shaper related experimental results 
 

 
Figure 4.97. Theoretical and experimental sensitivity curves for the Hybrid Input 

Shaper 
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Figure 4.98. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the Hybrid Input Shaper 
 

In Figure 4.98, the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system. It can clearly 

be seen that the variation of estimation error (or increasing uncertainty) of damping 

ratio has relatively reduced the effect on the residual vibration of the system. 

Therefore, the uncertainties on the damping ratio do not play an important role in 

affecting the behaviour of the system due to its very low value, i.e. z =0.07. On the 

other hand, the estimation error in natural frequency of the system appears to affect 

the motion of the system and the resulting residual vibration levels.  

 

4.1.2.11. Proposed New Input Shaping Technique: Modified Cycloid Plus 

Ramped Versine Plus Ramp (M-CPRVPR) Reference Function 

 

In Figures 4.99 and 4.100, the simulation and experimental results of modified 

two recursions for cycloid plus ramped versine plus ramp (CPRVPR) reference 

function are illustrated for different travelling time. In the figures, estimation error of 
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±%25 is introduced to natural frequency of the system used in calculation of the input 

signals. 

 

 
Figure 4.99. Modified CPRVPR2 function for a total travelling distance / 8L p=  and 

travelling time of 0.85 dTt =  with experimental and simulation results 
for (a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 

 

Figure 4.99 and 4.100 are plotted with estimation errors of (a) -%25, (b) %0, 

(c) +%25, respectively. Theoretically, there is no travelling time restriction on the 

system and this is the main advantages of this reference command. In Figures 4.99 the 

travelling time of the M-CPRVPR2 reference function 0.85 damped cycle of 

vibration. In Figures 4.100 the travelling time of the M-CPRVPR reference function 

is the same as that of the ZVD, EI and Hybrid shaper, one damped cycle of vibration. 
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In Figure 4.99, it can be seen that, the estimation error causes increasing 

residual vibrations of tip deflection ranging from 0.0182 to 0. 0527 rad. It can be seen 

that increasing error in estimation of the natural frequency of the system causes 

increasing residual vibrations. These results are also validated in Figure 4.101 and 

4.103 where tip deflections of different predicted natural frequencies and related 

sensitivity curves are presented, respectively. 

 

 
Figure 4.100. Modified CPRVPR2 function for a total travelling distance / 8L p=  

and travelling time of dTt =  with experimental and simulation results 
for (a) -%25, (b) %0, (c) +%25 estimation error of natural frequency 
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Figure 4.101. Tip deflection of different predicted natural frequencies for recursion 

of M-CPRVPR2 for a total travelling distance / 8L p=  and travelling 
time of 0.85 dTt =  related experimental results   

 

 
Figure 4.102. Tip deflection of different predicted natural frequencies for recursion 

of M-CPRVPR2 for a total travelling distance / 8L p=  and travelling 
time of dTt =  related experimental results   
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In Figure 4.100, it can be seen that, the estimation error causes increasing 

residual vibrations of tip deflection ranging from 0.0354 to 0. 0501 rad. It can be seen 

that increasing error in estimation of the natural frequency of the system causes 

increasing residual vibrations.  These results are also validated in Figure 4.102 and 

4.103 where tip deflections of different predicted natural frequencies and related 

sensitivity curves are presented, respectively. 

 

 
Figure 4.103. Theoretical and experimental sensitivity curves for the Modified 

CPRVPR2 reference function for different travelling times 
 

The theoretical and experimental sensitivity curves of the Modified 

CPRVPR2 reference function for different travelling time are shown in Figure 4.103. 

The experimental results closely match those predicted by the theoretical study. The 

Modified CPRVPR2 reference function has a time duration equal to 0.85 period of 

the vibration frequency, as opposed to the one period length of the ZVD shaper. 

Theoretically, there is no travelling time restriction on the system and this is the main 

advantages of this reference command. Figure 4.103 shows that the Modified 



4. RESULTS AND DISCUSSIONS                                                   Çağlar CONKER 

 180 

CPRVPR2 reference function is more insensitive to modelling errors than the ZVD 

shaper. 

 

 
Figure 4.104. Modified CPRVPR3 function for a total travelling distance / 8L p=  

and travelling time of 1.275 dTt =  with experimental and simulation 
results for (a) -%25, (b) %0, (c) +%25 estimation error of natural 
frequency 

 

In Figures 4.104 and 4.105, the simulation and experimental results of 

modified three recursions for cycloid plus ramped versine plus ramp (M-CPRVPR3) 

reference function are illustrated for different travelling time. In the figures, estimation 

error of ±%25 is introduced to natural frequency of the system used in calculation of 

the input signals. Figure 4.104 and 4.105 are plotted with estimation errors of (a) -%25, 
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(b) %0, (c) +%25, respectively. Theoretically, there is no travelling time restriction on 

the system and this is the main advantages of this reference command. In Figures 

4.104 the travelling time of the M-CPRVPR3 reference function 1.275 damped cycle 

of vibration. 

 

 
Figure 4.105. Modified CPRVPR3 function for a total travelling distance / 8L p=  

and travelling time of 1.5 dTt =  with experimental and simulation 
results for (a) -%25, (b) %0, (c) +%25 estimation error of natural 
frequency 

 

In Figure 4.105 the travelling time of the M-CPRVPR3 reference function is 

the same as that of the ZVDD and 2 Hump EI Shaper, one and a half damped cycle 

of vibration. 
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Figure 4.106.  Tip deflection of different predicted natural frequencies for recursion 

of M-CPRVPR3 for a total travelling distance / 8L p=  and 
travelling time of 1.275 dTt =  related experimental results   

 

 
Figure 4.107.  Tip deflection of different predicted natural frequencies for recursion 

of M-CPRVPR3 for a total travelling distance / 8L p=  and 
travelling time of 1.5 dTt =  related experimental results   

 

In Figure 4.104, it can be seen that, the estimation error causes increasing 

residual vibrations of tip deflection ranging from 0.0067 to 0. 041 rad. It can be seen 
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that increasing error in estimation of the natural frequency of the system causes 

increasing residual vibrations. These results are also validated in Figure 4.106 and 

4.108 where tip deflections of different predicted natural frequencies and related 

sensitivity curves are presented, respectively. In Figure 4.105, it can be seen that, the 

estimation error causes increasing residual vibrations of tip deflection ranging from 

0.0147 to 0. 0172 rad. It can be seen that increasing error in estimation of the natural 

frequency of the system causes slightly increasing residual vibrations.  These results 

are also validated in Figure 4.107 and 4.108 where tip deflections of different 

predicted natural frequencies and related sensitivity curves are presented, respectively. 

 

 
Figure 4.108. Theoretical and experimental sensitivity curves for the Modified 

CPRVPR3 reference function for different travelling times 
 

The theoretical and experimental sensitivity curves of the Modified 

CPRVPR3 reference function for different travelling time are shown in Figure 4.108. 

The experimental results closely match those predicted by the theoretical study. The 

Modified CPRVPR3 reference function has a time duration equal to 1.275 period of 

the vibration frequency, as opposed to the one and a half period length of the ZVDD 
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shaper. Theoretically, there is no travelling time restriction on the system and this is 

the main advantages of this reference command. 

 

 
Figure 4.109. Modified CPRVPR4 function for a total travelling distance / 8L p=  

and travelling time of 1.7 dTt =  with experimental and simulation 
results for (a) -%25, (b) %0, (c) +%25 estimation error of natural 
frequency 

 

In Figures 4.109 and 4.110, the simulation and experimental results of 

modified four recursions for cycloid plus ramped versine plus ramp (M-CPRVPR4) 

reference function are illustrated for different travelling time. In the figure, estimation 

error of ±%25 is introduced to natural frequency of the system used in calculation of 

the input signals. Figure 4.109 and 4.110 are plotted with estimation errors of (a) -%25, 
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(b) %0, (c) +%25, respectively. Theoretically, there is no travelling time restriction on 

the system and this is the main advantages of this reference command. In Figures 

4.109 the travelling time of the M-CPRVPR4 reference function 1.7 damped cycle of 

vibration. In Figures 4.110 the travelling time of the M-CPRVPR4 reference function 

is the same as that of the ZVDDD and 3 Hump EI Shaper, two damped cycle of 

vibration. 

 

 
Figure 4.110. Modified CPRVPR4 function for a total travelling distance / 8L p=  

and travelling time of 2 dTt =  with experimental and simulation 
results for (a) -%25, (b) %0, (c) +%25 estimation error of natural 
frequency 
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Figure 4.111.  Tip deflection of different predicted natural frequencies for recursion 

of M-CPRVPR4 for a total travelling distance / 8L p=  and 
travelling time of 1.7 dTt =  related experimental results 

 

 
Figure 4.112.  Tip deflection of different predicted natural frequencies for 

recursion of M-CPRVPR4 for a total travelling distance / 8L p=  
and travelling time of 2 dTt =  related experimental results 

 

In Figure 4.109, it can be seen that, the estimation error causes increasing 

residual vibrations of tip deflection ranging from 0.0159 to 0. 0203 rad. It can be seen 
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that increasing error in estimation of the natural frequency of the system causes 

slightly increasing residual vibrations. These results are also validated in Figure 4.111 

and 4.113 where tip deflections of different predicted natural frequencies and related 

sensitivity curves are presented, respectively. In Figure 4.110, it can be seen that, the 

estimation error causes increasing residual vibrations of tip deflection ranging from 

0.0225 to 0. 0297 rad. It can be seen that increasing error in estimation of the natural 

frequency of the system causes slightly increasing residual vibrations. These results are 

also validated in Figure 4.112 and 4.113 where tip deflections of different predicted 

natural frequencies and related sensitivity curves are presented, respectively. 

 

 
Figure 4.113. Theoretical and experimental sensitivity curves for the Modified 

CPRVPR4 reference function for different travelling times 
 

The theoretical and experimental sensitivity curves of the Modified 

CPRVPR4 reference function for different travelling time are shown in Figure 4.113. 

The experimental results closely match those predicted by the theoretical study. The 

Modified CPRVPR4 reference function has a time duration equal to 1.7 period of the 

vibration frequency, as opposed to the two period length of the ZVDDD shaper. 
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Theoretically, there is no travelling time restriction on the system and this is the main 

advantages of this reference command. 

 

 
Figure 4.114. Robustness of the system to uncertainties in the mode frequencies and 

damping ratios for the various M-CPRVPR reference functions 
 

In Figure 4.114., the variation of the residual vibration is presented against 

estimation error in natural frequency and damping ratio of the system for the various 
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M-CPRVPR reference functions. It can clearly be seen that the variation of 

estimation error (or increasing uncertainty) of damping ratio has relatively reduced 

the effect on the residual vibration of the system. Therefore, the uncertainties on the 

damping ratio do not play an important role in affecting the behaviour of the system 

mainly due to its very low value, i.e. z =0.07. On the other hand, the estimation error 

in natural frequency of the system appears to affect the motion of the system and the 

resulting residual vibration levels.  

 

4.2. Discussions 

 
In the previous sections the simulation and the experimental results of some 

selected positive and smoothly shaped reference commands and novel robust 

command shaping techniques are presented. Further details on the presented methods 

are available by referring to the Chapter 2 where some additional information as well 

relevant references are provided. The successful implementation of the presented 

input shaping methods requires accurate estimation or determination of the natural 

frequency and the damping ratio of the system in concern. However, the 

mathematical models of any flexible system cannot be modelled perfectly. The 

variations or change of the system parameters influences the shaped signal and also 

the system response. Therefore, the robustness of shaped signal to modelling 

uncertainty is an important performance comparison tool for command shaping 

methods. For almost all the robust shaping methods, the shaper duration (and as a 

result, command rise time) increases with the increasing robustness performance. 

However, this compromise is not consistent for all shaping methods. Some robust 

shaping methods provide robustness more efficiently, in terms of shaper duration. 

In this section, the presented methods are compared for length of travelling 

time, their robustness for system parameter estimation errors and efficiency of 

insensitivity (Vaughan et al., 2007).  

 

 

 



4. RESULTS AND DISCUSSIONS                                                   Çağlar CONKER 

 190 

Table 4.1. Performance criteria for comparison of positive input shaper 

Method 
Duration 
Td 
(cycle) 

Robustness 
5% 

Efficiency 
of 
insensitivity 
5% 

Robustness 
10% 

Efficiency 
of 
insensitivity  
10% 

ZV 0.5 0.063 0.126 0.1278 0.2556 
ZVD 1 0.2876 0.287 0.4098 0.4098 
ZVDD 1.5 0.480 0.32 0.6143 0.4095 
ZVDDD 2 0.627 0.3135 0.7602 0.3801 
EI 1 0.40 0.4 0.5604 0.5604 
2HEI 1.5 0,732 0.488 0.9097 0.6064 
3HEI 2 0.97 0.485 1.1337 0,5668 
MISZV-3 0.665 0.082 0.124 0.1673 0,251 
MISZV-4 0.749 0.090 0.121 0.1828 0.244 
MISZV-5 0,799 0.094 0.1176 0.1914 0.2395 
MISZVD4 1 0.287 0.287 0.4098 0.4098 
MISZVD6 1.16 0.332 0.286 0.4824 0.4158 

 

 
Figure 4.115. Efficiency of insensitivity comparison for positive input shapers 
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In Table 4.1 and Figure 4.115, the performance evaluation criteria for positive 

input shapers are provided. From the details provided in Table 4.1, it can be 

concluded that; 

 

ü The robust shapers typically have longer travelling times that leads to slower 

system response. This creates a compromise between shaper robustness and 

the rise/travelling time. 

ü The increasing travelling time appears to cause an increasing robustness that 

is mostly input shaping method dependent. Hence, the compromise on 

increasing travelling time gains increasing robustness that varies for each 

method. In other words, the efficiency of insensitivity varies from one 

method to another. 

ü The ZV shaper is very sensitive to modelling errors; a small errors in the 

modelling frequency leads to significant residual vibrations.  

ü The ZVD shaper has considerably more robustness to modelling errors than 

ZV input shaping method. It is evident by noting that the width of the ZVD 

robustness curve is much larger than the width of the ZV robustness curve.  

ü The additional insensitivity of the ZVD shaper incurs a time penalty; the 

ZVD shaper is longer than the ZV shaper by one half period of the vibration. 

This means that a shaped command generated with a ZVD shaper will be one 

half period of vibration longer than a ZV shaped command. In most cases, 

this is a small price to pay for the large increase in the robustness. 

ü The performance of MISZV stands between ZV and ZVD. The travelling 

time and robustness properties of the MISZV method stand in between ZV 

and ZVD methods. Each additional impulse to the reference command 

improves the robustness performance while extending the travelling time.  

ü The EI shaper is essentially the same length as the ZVD shaper, but it is 

considerably more robust. The two-hump EI has the same duration as the 

ZVDD, while the three-hump EI and ZVDDD have the same durations. 
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However, the multi hump EI shapers have much more robustness compared 

to derivative methods (ZVD, ZVDD, ZVDDD). 

ü Performances of the techniques are compared for efficiency of insensitivity 

for which it is shown that two hump extra insensitive (2HEI) seems to be the 

best of all. 

 

Table 4.2. Performance criteria for comparison of negative input shapers 

Method 
Duration 
Td 
(cycle) 

Robustness 
5% 

Efficiency 
of 
insensitivity 
5% 

PS-ZV 
UM-ZV 
PS-ZVD 
UM-ZVD 
PS-EI 
UM-EI 
PS-2HEI 
UM-2HEI 

0.29 
0.33 
0.67 
0.73 
0.67 
0.73 
1.12 
1.18 

0.054 
0.0548 
0.2535 
0.2585 
0.3481 
0.3559 
0.6437 
0.659 

0.186 
0.166 
0.3783 
0.3541 
0.5119 
0.4875 
0.5747 
0.5584 

 

 
Figure 4.116. Efficiency of insensitivity comparison for negative input shapers  
 

In Table 4.2 and Figure 4.116, the performance evaluation criteria for 

negative input shapers are provided. From the details provided in Table 4.2, it can be 

concluded that; 
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ü A negative shaper will have slightly poorer performance than a positive 

shaper in the presence of modelling errors, even though they satisfy the same 

robustness constraints. 

ü It can be seen from Table 4.2 and Figure 4.116 that the time delay for the 

input shapers increases with increasing insensitivity. This indicates that there 

is a conflict between the shaper robustness and the shaper time delay. 

ü Performances of the techniques are compared for efficiency of insensitivity 

(Vaughan et al., 2007) for which it is shown that partial sum two hump extra 

insensitive (PS-2HEI) seems to be the best of all. 

 

Table 4.3. Performance criteria for comparison of smoothly shaped reference 
commands 

Method 
Duration 
Td 
(cycle) 

Robustness 
5% 

Efficiency 
of 
insensitivity 
5% 

Robustness 
10% 

Efficiency 
of 
insensitivity 
10% 

CPRVPR 0.5 0.0585 0.117 0.1175 0.235 
HIS 1 0.2754 0.2754 0.3927 0.3927 
M-CPRVPR2 
M-CPRVPR2 
M-CPRVPR3 
M-CPRVPR3 
M-CPRVPR4 
M-CPRVPR4 

0.85 
1 
1.275 
1.5 
1.7 
2 

0.3392 
0.2755 
0.3713 
0.4162 
0.4521 
0.4086 

0.399 
0.2755 
0.2912 
0.2774 
0.2659 
0,2043 

0.4491 
0.3927 
0.494 
0.8233 
0.7939 
0.7057 

0.5283 
0.3927 
0.3874 
0.5488 
0.467 
0.3528 

 

In Table 4.3 and Figure 4.117, the performance evaluation criteria for 

smoothly shaped reference commands are provided. From the details provided in 

Table 4.3, it can be concluded that; 

 

ü The time delay for the input shapers increases with increasing insensitivity. 

This indicates that there is a conflict between shaper robustness and the 

shaper time delay just as in the case of other input shaping methods. 

ü The CPRVPR reference function is very sensitive to modelling errors; a small 

errors in the modelling frequency leads to significant residual vibrations. 
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Figure 4.117. Efficiency of insensitivity comparison for smoothly shaped reference 

commands 
 

ü Hybrid input shaper is much more insensitive to modelling errors than the 

CPRVPR reference function. However, the Hybrid input shaper has a time 

duration equal to one period of the vibration frequency, as opposed to the 

one-half period length of the CPRVPR reference function. 

ü Performances of the techniques are compared for %5 efficiency of 

insensitivity for which it is shown that Modified CPRVPR2 (τ=0.85Td) 

reference function seems to be the best of smoothly shaped reference 

commands. 
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ü The M-CPRVPR2 (τ=0.85Td) reference function almost the same efficiency 

of insensitivity value as the EI input shaper. The EI shaper has a time 

duration equal to one period of the vibration frequency, as opposed to the 

0.85 period length of the M-CPRVPR2 reference function. 

ü Performances of the techniques are compared for %10 efficiency of 

insensitivity for which it is shown that Modified CPRVPR3 (τ =1.5Td) 

reference function seems to be the best of smoothly shaped reference 

commands. 

ü Performances of the techniques are compared for %10 efficiency of 

insensitivity for which it is shown that performance of Modified CPRVPR4 

(τ=1.7Td) reference function stands between ZVDDD and 3HEI. The 

ZVDDD and 3HEI shaper has a time duration equal to 2 times the period of 

the vibration frequency, as opposed to the 1.7 period length of the M-

CPRVPR4 reference function. 

ü The advantage of the proposed technique (M-CPRVPR) is that it neither 

limits nor increases the move time, i.e. no time limitation or time penalty. 

Most conventional input shaping methods, however, tend to increase the 

travelling time by at least a half damped period or more. 

ü It is shown that proposed the new technique is simple and easy to implement, 

and can be considered as a versatile and effective way to determine a 

trajectory resulting in reduced or eliminated residual vibrations of flexible 

systems with high robustness. 
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5. CONCLUSIONS AND RECOMMENDATIONS 
 

The motion control and related studies have become one of the main subjects 

of robotics and other automation related research areas in recent years. In modern 

manufacturing industry, high speed and sensitive motion control is necessary for the 

high speed and high quality production. However, the high speed requirement makes 

the sensitive motion control difficult due to residual vibrations. Therefore, finding a 

balance between the speed of motion and the elimination or at least reduction of 

residual vibration becomes an important part of a motion control study and related 

practical applications. 

One of the methods used to reduce or eliminate residual vibrations is to 

modify the input signal by using the system parameters that are known beforehand. 

In order to eliminate the residual vibration completely, these system parameter must 

be known very accurately. In real systems, achieving such accuracy may not always 

be possible. To address the problem and to provide a solution, in this thesis, a new 

residual vibration elimination method is introduced. This new method proves to be 

very useful especially in the case of estimated system parameters with uncertainty. s. 

The simulation and the experimental results show that the presented new technique is 

capable of handling high levels of uncertainty and able to successfully eliminate or 

reduce residual vibrations in flexible systems. The advantage of the proposed 

technique is that it neither limits nor increases the move time, i.e. no time limitation 

or time penalty. Most conventional input shaping methods, however, tend to increase 

the travelling time by at least a half of the damped system period or more. The 

proposed new command shaping method divides the travelling time into two or more 

sections and calculates the command input as two or more separate inputs, and then 

joins them to form the new input. In generation of each of the input signal, cycloid-

plus-ramped and versine-plus-ramp functions are used. This reference input is 

composed of three functions. Considering the total distance to be covered within a 

specified time, it is divided into three parts. Each part is travelled by each of the three 

functions within the same travel time. Provided that the specified move time and the 

total distance are unchanged, the residual vibrations can be eliminated by adjusting 
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excursion distance of each function. Each component of input creates such 

oscillations that they cancel each other out. The new method allows virtually division 

of the motion of the system into two or more steps. Because the first step completes 

with almost steady motion with relatively reduced vibration levels, the other parts of 

the motions starts with the advantage of very little or almost no residual vibrations. 

Consequently, the result of the additional each part of the motion yields better 

performance in reducing the residual vibrations.  

This study presents a review of command pre-shaping methods and 

investigates the compromise between rapidity of motion and shaper robustness. The 

reviewed methods cover almost all types of positive and negative input shapers, and 

smoothly shaped reference commands reported in literature. Therefore, the presented 

study provides almost a complete picture of the research topic for the researchers 

working in the area. The study is structured in a way that it provides all the necessary 

theoretical background and the implementation related details for each of the method 

presented. 

The study presents theoretical and experimental results of the techniques 

applied to the flexible mechanical systems where the comparative study of 

robustness performance is also provided. In order to perform a comparison amongst 

the input shaping methods and the experimental results of the techniques, the 

previously described experimental setups and the mathematical models of the systems 

are used. The experimental setups are driven using each input and the resulting residual 

vibrations as well as the cart and the servo position are measured. The Matlab (2009a) 

models of the systems are also provided with the same input commands to demonstrate 

the correlation between the theoretical and the experimental results obtained. The 

simulation and the experimental results show that the proposed new technique is 

simple and easy to implement, and can be considered as a versatile and an effective 

way to determine a trajectory resulting in reduced or eliminated residual vibrations of 

flexible robotic systems with high robustness in the presence of system parameters 

uncertainty. 

Many possible areas for future work lie in the development of new types of 

practical constraints that can be appended to this approach. For example, constraint 
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equations to regulate power consumption or system deflection may yield a new class 

of practical command profiles.  

Considering that controlling of flexible link robotic systems using input 

shaping methods reveal that especially robotic manipulators could be made of 

flexible links and still very high positioning accuracy and very high repeatability 

could be achieved. Therefore, in the future, it is expected to see new generation of 

robotic manipulators using input shaping methods that will be more flexible and 

probably under actuated.  

The further developments expected in the area would be use of Artificial 

Intelligence in input shaping. This development would allow generation and 

application of input shaping for robust and vibration free operation of robotic and 

other similar industrial systems. It would then be possible to make these systems at 

high performance, lower cost and ease of application. 
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